What makes a sentence be about the world? Towards a unified account of groundedness

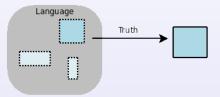
Floris T. van Vugt¹ floris.van.vugt@ens.fr

October 19, 2008

"Ekam sat vipraha bahudha vadanti" (*Rig Veda* 1.64.46) *Truth is one, the wise call it by many names.*

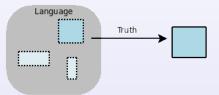
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

"Ekam sat vipraha bahudha vadanti" (*Rig Veda* 1.64.46) *Truth is one, the wise call it by many names.*

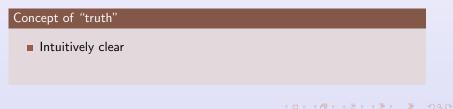


Truth models relationship between language and external world.

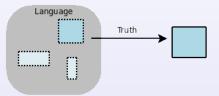
"Ekam sat vipraha bahudha vadanti" (*Rig Veda* 1.64.46) *Truth is one, the wise call it by many names.*



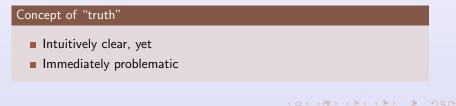
Truth models relationship between language and external world.



"Ekam sat vipraha bahudha vadanti" (*Rig Veda* 1.64.46) *Truth is one, the wise call it by many names.*



Truth models relationship between language and external world.



Truth-predicate

A predicate Tr that applies to any (code of) sentence ϕ , such that

 $\mathrm{Tr}[\phi]$ if and only if ϕ

(*T-equivalence*) e.g. "[snow is white] is true" iff snow is white.

Truth-predicate

A predicate Tr that applies to any (code of) sentence ϕ , such that

 $\mathrm{Tr}[\phi]$ if and only if ϕ

(*T-equivalence*) e.g. "[snow is white] is true" iff snow is white.

Liar sentence

This sentence is not true.

Truth-predicate

A predicate Tr that applies to any (code of) sentence ϕ , such that

 $\mathrm{Tr}[\phi]$ if and only if ϕ

(*T-equivalence*) e.g. "[snow is white] is true" iff snow is white.

Liar sentence

This sentence is not true.

i.e. $\lambda = \neg \operatorname{Tr}[\lambda]$

Truth-predicate

A predicate Tr that applies to any (code of) sentence ϕ , such that

 $\mathrm{Tr}[\phi]$ if and only if ϕ

(*T-equivalence*) e.g. "[snow is white] is true" iff snow is white.

Liar sentence

This sentence is not true.

i.e. $\lambda = \neg \mathsf{Tr}[\lambda]$

Is it true or false?

Truth-predicate

A predicate Tr that applies to any (code of) sentence ϕ , such that

 $\mathrm{Tr}[\phi]$ if and only if ϕ

(*T-equivalence*) e.g. "[snow is white] is true" iff snow is white.

Liar sentence

This sentence is not true.

i.e. $\lambda = \neg \operatorname{Tr}[\lambda]$

Is it true or false?

•
$$\operatorname{Tr}[\lambda] \to \lambda \to \neg \operatorname{Tr}[\lambda]$$

• $\neg \operatorname{Tr}[\lambda] \to \neg \lambda \to \operatorname{Tr}[\lambda]$

Groundedness informally

What class of sentences is problematic?

1 Reference to the world, i.e. to empirical facts

Groundedness informally

What class of sentences is problematic?

1 Reference to the world, i.e. to empirical facts

• "Snow is white" \rightarrow empirical world.

- 1 Reference to the world, i.e. to empirical facts
 - "Snow is white" \rightarrow empirical world.
 - "[Snow is white] is true" \rightarrow Snow is white \rightarrow empirical world

1 Reference to the world, i.e. to empirical facts

- "Snow is white" \rightarrow empirical world.
- "[Snow is white] is true" \rightarrow Snow is white \rightarrow empirical world

2 Self-reference

1 Reference to the world, i.e. to empirical facts

- "Snow is white" \rightarrow empirical world.
- "[Snow is white] is true" \rightarrow Snow is white \rightarrow empirical world

2 Self-reference

$$\bullet \ \lambda \to \lambda \to \lambda \to \dots$$

Reference to the world, i.e. to empirical facts

- "Snow is white" \rightarrow empirical world.
- "[Snow is white] is true" \rightarrow Snow is white \rightarrow empirical world

2 Self-reference

$$\lambda \to \lambda \to \lambda \to \dots$$

But where is the demarcation between the two?

Reference to the world, i.e. to empirical facts

- "Snow is white" \rightarrow empirical world.
- "[Snow is white] is true" \rightarrow Snow is white \rightarrow empirical world

(日)、(型)、(E)、(E)、(E)、(Q)()

Self–reference

$$\lambda \to \lambda \to \lambda \to \dots$$

But where is the demarcation between the two?

Groundedness

Referring (in)directly to non-semantic states of affairs.

Definition of truth: the task

Definition of truth: the task

■ Given a classical language *L*, define the extension of a predicate Tr of (codes of) sentences.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Definition of truth: the task

■ Given a classical language *L*, define the extension of a predicate Tr of (codes of) sentences.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Evade the problem of liar sentences.

Definition of truth: the task

- Given a classical language *L*, define the extension of a predicate Tr of (codes of) sentences.
- Evade the problem of liar sentences.

Kripke

In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.

(日)、(型)、(E)、(E)、(E)、(Q)()

Definition of truth: the task

- Given a classical language *L*, define the extension of a predicate Tr of (codes of) sentences.
- Evade the problem of liar sentences.

Kripke

In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.

(日)、(型)、(E)、(E)、(E)、(Q)()

• All T–equivalences hold, but $Val^3\lambda = n$.

Definition of truth: the task

- Given a classical language *L*, define the extension of a predicate Tr of (codes of) sentences.
- Evade the problem of liar sentences.

Kripke

In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.

- All T–equivalences hold, but $Val^3\lambda = n$.
- Step(0): $Tr[\phi]$ is neutral for all $\phi \in \mathcal{L}_{Tr}$

Definition of truth: the task

- Given a classical language *L*, define the extension of a predicate Tr of (codes of) sentences.
- Evade the problem of liar sentences.

Kripke

- In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.
- All T–equivalences hold, but $Val^3\lambda = n$.
- Step(0): $Tr[\phi]$ is neutral for all $\phi \in \mathcal{L}_{Tr}$
- Step(n+1): Tr[φ] is true if φ is true given Step(n), Tr[φ] is false if φ is false given Step(n), neutral otherwise.

(日)、(型)、(E)、(E)、(E)、(Q)()

Definition of truth: the task

- Given a classical language L, define the extension of a predicate Tr of (codes of) sentences.
- Evade the problem of liar sentences.

Kripke

- In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.
- All T–equivalences hold, but $Val^3\lambda = n$.
- Step(0): $Tr[\phi]$ is neutral for all $\phi \in \mathcal{L}_{Tr}$
- Step(n+1): Tr[φ] is true if φ is true given Step(n), Tr[φ] is false if φ is false given Step(n), neutral otherwise.
- Grounded sentences are those that eventually obtain a truth value.

Leitgeb's truth-predicate construction

Some notation

Two-valued logic, based on arithmetic.

- Two-valued logic, based on arithmetic.
- Val $_{\Psi}\phi$ is semantic value of ϕ when $\parallel \text{Tr} \parallel = \Psi$.

- Two-valued logic, based on arithmetic.
- Val_{Ψ} ϕ is semantic value of ϕ when \parallel Tr \parallel = Ψ .

•
$$Val_{\Psi}(2+2=4) = 1.$$

- Two-valued logic, based on arithmetic.
- Val $_{\Psi}\phi$ is semantic value of ϕ when $\parallel \text{Tr} \parallel = \Psi$.

(日)、(型)、(E)、(E)、(E)、(Q)()

•
$$Val_{\Psi}(2+2=4) = 1.$$

•
$$\operatorname{Val}_{\emptyset}\operatorname{Tr}[2+2=4] = 0.$$

- Two-valued logic, based on arithmetic.
- Val $_{\Psi}\phi$ is semantic value of ϕ when $\parallel \text{Tr} \parallel = \Psi$.

(日)、(型)、(E)、(E)、(E)、(Q)()

•
$$Val_{\Psi}(2+2=4) = 1.$$

•
$$\operatorname{Val}_{\emptyset}\operatorname{Tr}[2+2=4]=0.$$

■
$$Val_{2+2=4}$$
 $Tr[2+2=4] = 1.$

- Two-valued logic, based on arithmetic.
- Val_{Ψ} ϕ is semantic value of ϕ when \parallel Tr \parallel = Ψ .

•
$$Val_{\Psi}(2+2=4) = 1.$$

• $Val_{\emptyset}Tr[2+2=4] = 0$

•
$$Val_{2+2=4}$$
 $Tr[2+2=4] = 1.$

• Val
$$_{\{\lambda\}}\lambda = 0$$

Leitgeb's definition of dependence

Leitgeb: ϕ depends on a set of sentences Φ

Leitgeb's definition of dependence

Leitgeb: ϕ depends on a set of sentences Φ

No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Leitgeb's definition of dependence

Leitgeb: ϕ depends on a set of sentences Φ

No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).

• $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$

Leitgeb: ϕ depends on a set of sentences Φ

No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).

• $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$

• 2+2=4 depends on \emptyset (and supersets)

Leitgeb: ϕ depends on a set of sentences Φ

No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).

- $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$
- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)

Leitgeb: ϕ depends on a set of sentences Φ

No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).

- $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$
- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)
- $\lambda = \neg \mathrm{Tr}[\lambda]$ depends on

Leitgeb: ϕ depends on a set of sentences Φ

No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).

- $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$
- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)
- $\lambda = \neg \operatorname{Tr}[\lambda]$ depends on λ (itself!)

Leitgeb: ϕ depends on a set of sentences Φ

No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).

- $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$
- 2+2=4 depends on \emptyset (and supersets)
- Tr $\lceil 2 + 2 = 4 \rceil$ depends on $\{2 + 2 = 4\}$ (idem)
- $\lambda = \neg \text{Tr}[\lambda]$ depends on λ (itself!)

Leitgeb's definition of groundedness

- Step(0) $\Phi_0 = \emptyset$.
- Step(n+1) $\Phi_{n+1} = \{ \lceil \phi \rceil | \phi \operatorname{dep} \Phi_n \}$

Leitgeb: ϕ depends on a set of sentences Φ

- No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).
- $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$
- 2+2=4 depends on \emptyset (and supersets)
- Tr $\lceil 2 + 2 = 4 \rceil$ depends on $\{2 + 2 = 4\}$ (idem)
- $\lambda = \neg \text{Tr}[\lambda]$ depends on λ (itself!)

Leitgeb's definition of groundedness

- Step(0) $\Phi_0 = \emptyset$.
- Step(n+1) $\Phi_{n+1} = \{ \lceil \phi \rceil | \phi \operatorname{dep} \Phi_n \}$
- Least fixed point Φ_{If} are grounded sentences.

Leitgeb: ϕ depends on a set of sentences Φ

- No difference in truth value of φ without a difference in truth of sentences in Φ (insensitive to sentences outside Φ).
- $\phi \operatorname{dep} \Phi$ iff $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$
- 2+2=4 depends on \emptyset (and supersets)
- Tr $\lceil 2 + 2 = 4 \rceil$ depends on $\{2 + 2 = 4\}$ (idem)
- $\lambda = \neg \text{Tr}[\lambda]$ depends on λ (itself!)

Leitgeb's definition of groundedness

- Step(0) $\Phi_0 = \emptyset$.
- Step(n+1) $\Phi_{n+1} = \{ \lceil \phi \rceil | \phi \operatorname{dep} \Phi_n \}$
- Least fixed point Φ_{If} are grounded sentences.
- T-equivalences are required to hold only for grounded sentences.

Main question: comparison of "groundedness"

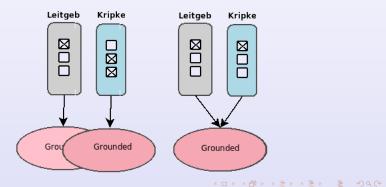
Kripke and Leitgeb: constructions very similar, but not the same set of grounded sentences.

Main question: comparison of "groundedness"

Kripke and Leitgeb: constructions very similar, but not the same set of grounded sentences.

Hypothesis

There is one notion of groundedness, but Kripke and Leitgeb's *parameter settings* differ.



• **Problem**
$$\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$$

• **Problem**
$$\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \lor \neg \operatorname{Tr}[\lambda]$$

• θ depends on \emptyset : θ is Leitgeb-grounded.

(日)

• **Problem** $\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$

- θ depends on \emptyset : θ is Leitgeb–grounded.
- θ is not a tautology in three-valued logic: θ is not Kripke-grounded.

(日)、(型)、(E)、(E)、(E)、(Q)()

• **Problem** $\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$

- θ depends on \emptyset : θ is Leitgeb–grounded.
- θ is not a tautology in three-valued logic: θ is not Kripke-grounded.

(日)、(型)、(E)、(E)、(E)、(Q)()

Cantini Supervaluation

Definition of FV(Φ): the set of sentences true given any consistent truth predicate extending Φ.

• **Problem** $\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$

- θ depends on \emptyset : θ is Leitgeb-grounded.
- θ is not a tautology in three-valued logic: θ is not Kripke-grounded.

(日)、(型)、(E)、(E)、(E)、(Q)()

Cantini Supervaluation

- Definition of FV(Φ): the set of sentences true given any consistent truth predicate extending Φ.
 - $\mathsf{FV}(\Phi) = \{\phi \in \mathcal{L}_{\mathsf{Tr}} | \text{for all consistent } \Psi \supset \Phi, \mathsf{Val}_{\Psi} \phi = 1\}$

• **Problem** $\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$

- θ depends on \emptyset : θ is Leitgeb-grounded.
- θ is not a tautology in three-valued logic: θ is not Kripke-grounded.

(日)、(型)、(E)、(E)、(E)、(Q)()

Cantini Supervaluation

- Definition of FV(Φ): the set of sentences true given any consistent truth predicate extending Φ.
 - $\mathsf{FV}(\Phi) = \{\phi \in \mathcal{L}_{\mathsf{Tr}} | \text{for all consistent } \Psi \supset \Phi, \mathsf{Val}_{\Psi} \phi = 1\}$
- $E'_0 = \emptyset$, $E'_{n+1} = FV(E'_n)$. Least fixed point is E'_{∞} .

• **Problem** $\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$

- θ depends on \emptyset : θ is Leitgeb-grounded.
- θ is not a tautology in three-valued logic: θ is not Kripke-grounded.

(日)、(型)、(E)、(E)、(E)、(Q)()

Cantini Supervaluation

- Definition of FV(Φ): the set of sentences true given any consistent truth predicate extending Φ.
 - $\mathsf{FV}(\Phi) = \{\phi \in \mathcal{L}_{\mathsf{Tr}} | \text{for all consistent } \Psi \supset \Phi, \mathsf{Val}_{\Psi} \phi = 1\}$
- $E'_0 = \emptyset$, $E'_{n+1} = FV(E'_n)$. Least fixed point is E'_{∞} .
- Grounded sentences: those that are in E'_{∞} or their negation is.

• **Problem** $\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$

- θ depends on \emptyset : θ is Leitgeb-grounded.
- θ is not a tautology in three-valued logic: θ is not Kripke-grounded.

(日)、(型)、(E)、(E)、(E)、(Q)()

Cantini Supervaluation

- Definition of FV(Φ): the set of sentences true given any consistent truth predicate extending Φ.
 - $\mathsf{FV}(\Phi) = \{\phi \in \mathcal{L}_{\mathsf{Tr}} | \text{for all consistent } \Psi \supset \Phi, \mathsf{Val}_{\Psi} \phi = 1\}$

•
$$E'_0 = \emptyset$$
, $E'_{n+1} = FV(E'_n)$. Least fixed point is E'_{∞} .

• Grounded sentences: those that are in E'_{∞} or their negation is.

• **Problem** $\theta \stackrel{\text{\tiny def}}{=} \operatorname{Tr}[\lambda] \vee \neg \operatorname{Tr}[\lambda]$

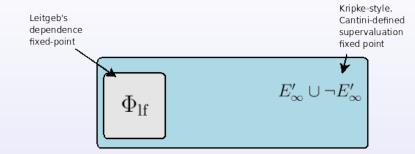
- θ depends on \emptyset : θ is Leitgeb-grounded.
- θ is not a tautology in three-valued logic: θ is not Kripke-grounded.

Cantini Supervaluation

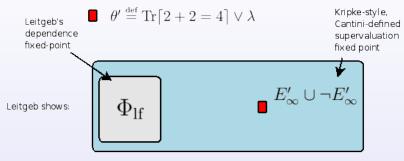
- Definition of FV(Φ): the set of sentences true given any consistent truth predicate extending Φ.
 - $\mathsf{FV}(\Phi) = \{\phi \in \mathcal{L}_{\mathsf{Tr}} | \text{for all consistent } \Psi \supset \Phi, \mathsf{Val}_{\Psi} \phi = 1\}$
- $E'_0 = \emptyset$, $E'_{n+1} = FV(E'_n)$. Least fixed point is E'_{∞} .

• Grounded sentences: those that are in E'_{∞} or their negation is.

• Cantini's $\pm E'_{\infty}$ includes Leitgeb's Φ_{lf} , but strictly.

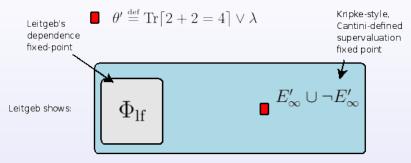


◆□>
◆□>
●
●
●
●
●



▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

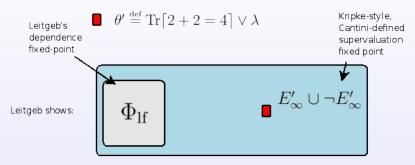
• Problem $\theta' = \operatorname{Tr}[2+2=4] \lor \lambda$



• Problem $\theta' = \operatorname{Tr}[2+2=4] \lor \lambda$

• θ' depends on $\{2+2=4,\lambda\}$ but no subset: not Leitgeb-grounded.

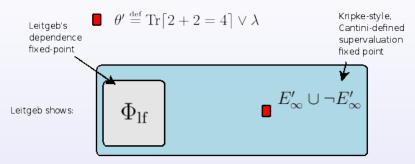
▲ロ → ▲冊 → ▲ 目 → ▲ 目 → の Q (~



Problem $\theta' = \operatorname{Tr}[2+2=4] \lor \lambda$

• θ' depends on $\{2+2=4,\lambda\}$ but no subset: not Leitgeb-grounded.

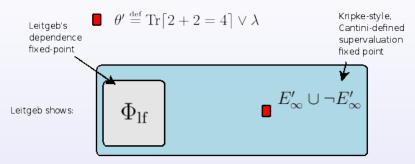
• θ' is true in all cons. ext. of $\{2 + 2 = 4\}$: Cantini–grounded.



Problem $\theta' = \operatorname{Tr}[2+2=4] \lor \lambda$

• θ' depends on $\{2+2=4,\lambda\}$ but no subset: not Leitgeb-grounded.

- θ' is true in all cons. ext. of $\{2+2=4\}$: Cantini-grounded.
- **Solution** (Leitgeb) presuppose truths previously established.

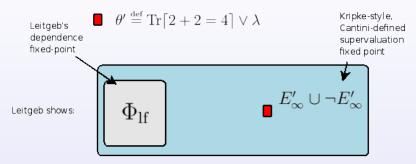


Problem $\theta' = \operatorname{Tr}[2+2=4] \lor \lambda$

- θ' depends on $\{2+2=4,\lambda\}$ but no subset: not Leitgeb-grounded.
- θ' is true in all cons. ext. of $\{2+2=4\}$: Cantini-grounded.

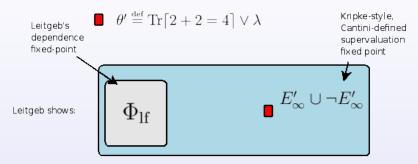
Solution (Leitgeb) presuppose truths previously established.

• $\phi \Sigma$ -depends on Φ iff ϕ insensitive to sentences outside Φ and presupposing Tr extends Σ .



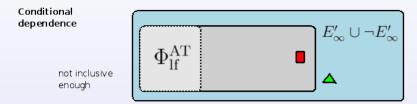
Problem $\theta' = \operatorname{Tr}[2+2=4] \lor \lambda$

- θ' depends on $\{2+2=4,\lambda\}$ but no subset: not Leitgeb-grounded.
- θ' is true in all cons. ext. of $\{2+2=4\}$: Cantini–grounded.
- **Solution** (Leitgeb) presuppose truths previously established.
 - $\phi \Sigma$ -depends on Φ iff ϕ insensitive to sentences outside Φ and presupposing Tr extends Σ .
 - $\phi \operatorname{dep}_{\Sigma}(\Phi)$ iff for all $\Psi_1, \Psi_2 \supset \Sigma, \operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi.$

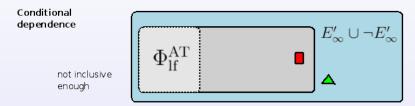


• **Problem** $\theta' = \operatorname{Tr}[2+2=4] \lor \lambda$

- θ' depends on $\{2+2=4,\lambda\}$ but no subset: not Leitgeb-grounded.
- θ' is true in all cons. ext. of $\{2+2=4\}$: Cantini–grounded.
- **Solution** (Leitgeb) presuppose truths previously established.
 - $\phi \Sigma$ -depends on Φ iff ϕ insensitive to sentences outside Φ and presupposing Tr extends Σ .
 - $\phi \operatorname{dep}_{\Sigma}(\Phi)$ iff for all $\Psi_1, \Psi_2 \supset \Sigma, \operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi.$ • $\Phi_0 = \emptyset, \Gamma_0 = \emptyset$ (the set of true sentences) • $\Phi_{\alpha+1} = \{\phi | \phi \operatorname{dep}_{\Gamma_{\alpha}}(\Phi_{\alpha})\}, \ \Gamma_{\alpha+1} = \{\phi \in \Phi_{\alpha} | \operatorname{Val}_{\Gamma_{\alpha}} \phi = 1\}$

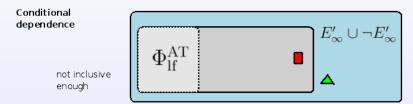


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで



▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

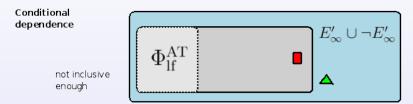
• **Problem** $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$



• **Problem** $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

Always false if Tr is consistent: Cantini-grounded.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

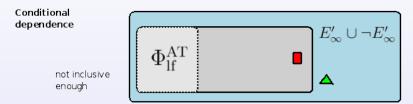


Problem $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

Always false if Tr is consistent: Cantini-grounded.

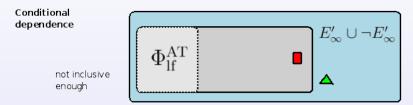
▲ロ → ▲冊 → ▲ 目 → ▲ 目 → の Q (~

Depends on $\{\lambda, \neg\lambda\}$: not Leitgeb-grounded.



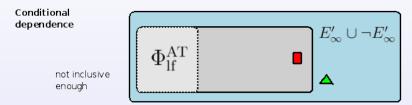
Problem $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

- Always false if Tr is consistent: Cantini-grounded.
- Depends on $\{\lambda, \neg\lambda\}$: not Leitgeb–grounded.
- Solution also presuppose consistency of extension of Tr



Problem $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

- Always false if Tr is consistent: Cantini-grounded.
- Depends on {\lambda, ¬\lambda}: not Leitgeb-grounded.
- **Solution** also presuppose consistency of extension of Tr
 - $\phi \Sigma$ -c-depends on Φ iff ϕ insensitive to sentences outside Φ , presupposing Tr extends Σ and is consistent.

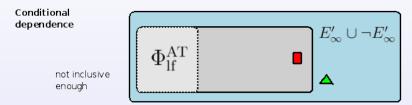


Problem $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

- Always false if Tr is consistent: Cantini-grounded.
- Depends on {\lambda, ¬\lambda}: not Leitgeb-grounded.

Solution also presuppose consistency of extension of Tr

- $\phi \Sigma$ -c-depends on Φ iff ϕ insensitive to sentences outside Φ , presupposing Tr extends Σ and is consistent.
- $\begin{array}{l} \bullet \ \phi \ \mathrm{cdep}_{\Sigma}(\Phi) \ \mathrm{iff \ for \ all \ } consistent \\ \Psi_1, \Psi_2 \supset \Sigma, \mathsf{Val}_{\Psi_1} \phi \neq \mathsf{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi. \end{array}$



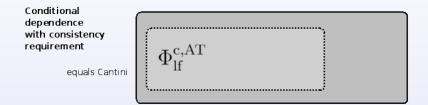
• **Problem** $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

- Always false if Tr is consistent: Cantini–grounded.
- Depends on $\{\lambda, \neg\lambda\}$: not Leitgeb–grounded.

Solution also presuppose consistency of extension of Tr

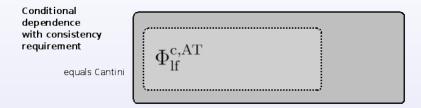
- $\phi \Sigma$ -c-depends on Φ iff ϕ insensitive to sentences outside Φ , presupposing Tr extends Σ and is consistent.
- $\phi \operatorname{cdep}_{\Sigma}(\Phi)$ iff for all consistent
 $$\begin{split} \Psi_1, \Psi_2 \supset \Sigma, \mathsf{Val}_{\Psi_1} \phi \neq \mathsf{Val}_{\Psi_2} \phi \to \Psi_1 \cap \phi \neq \Psi_2 \cap \phi. \\ \blacksquare & \text{Construction of } \Phi_{\mathsf{lf}}^{c, \mathrm{AT}} \text{ as before.} \end{split}$$

Overview of parameter changes



Main result

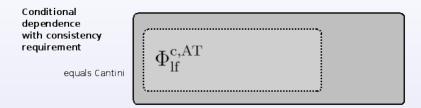
Overview of parameter changes



Main result

 Kripke (+classical) and Leitgeb (+conditional, +consistent) yield same grounded sentences.

Overview of parameter changes



Main result

- Kripke (+classical) and Leitgeb (+conditional, +consistent) yield same grounded sentences.
- By changing parameters arrived at single notion of *groundedness*.

Every step in their constructions has become equal.

Every step in their constructions has become equal.

(日)、(型)、(E)、(E)、(E)、(Q)

 \blacksquare Rewriting Leitgeb's definition from Φ to Γ

Every step in their constructions has become equal.

(日)、(型)、(E)、(E)、(E)、(Q)

1 Rewriting Leitgeb's definition from Φ to Γ

$$\bullet \ \Phi_{\alpha} = \pm \Gamma_{\alpha}$$

Every step in their constructions has become equal.

I Rewriting Leitgeb's definition from Φ to Γ

$$\Phi_{\alpha} = \pm \Gamma_{\alpha}$$

So we can define $\Gamma_{\alpha+1} = \Delta_c(\Gamma_\alpha)$ where $\Delta_c(\Gamma) = \{\phi | \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \land \operatorname{Val}_{\Gamma} \phi = 1\}.$

Every step in their constructions has become equal.

I Rewriting Leitgeb's definition from Φ to Γ

$$\Phi_{\alpha} = \pm \Gamma_{\alpha}$$

So we can define $\Gamma_{\alpha+1} = \Delta_c(\Gamma_\alpha)$ where $\Delta_c(\Gamma) = \{\phi | \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \land \operatorname{Val}_{\Gamma} \phi = 1\}.$

(日)、(型)、(E)、(E)、(E)、(Q)

 $2 \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \leftrightarrow \forall \Psi \supset \Gamma, \operatorname{Val}_{\Psi} \phi = \operatorname{Val}_{\Gamma} \phi$

Every step in their constructions has become equal.

1 Rewriting Leitgeb's definition from Φ to Γ

- $\bullet \ \Phi_{\alpha} = \pm \Gamma_{\alpha}$
- So we can define $\Gamma_{\alpha+1} = \Delta_c(\Gamma_\alpha)$ where $\Delta_c(\Gamma) = \{\phi | \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \land \operatorname{Val}_{\Gamma} \phi = 1\}.$
- - (\rightarrow) for consistent $\Psi \supset \Gamma$, $\Psi \cap \pm \Gamma = \Gamma$.

Every step in their constructions has become equal.

- **1** Rewriting Leitgeb's definition from Φ to Γ
 - $\bullet \ \Phi_{\alpha} = \pm \Gamma_{\alpha}$
 - So we can define $\Gamma_{\alpha+1} = \Delta_c(\Gamma_\alpha)$ where $\Delta_c(\Gamma) = \{\phi | \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \land \operatorname{Val}_{\Gamma} \phi = 1\}.$
- $2 \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \leftrightarrow \forall \Psi \supset \Gamma, \operatorname{Val}_{\Psi} \phi = \operatorname{Val}_{\Gamma} \phi$
 - (\rightarrow) for consistent $\Psi \supset \Gamma$, $\Psi \cap \pm \Gamma = \Gamma$.
 - (\leftarrow) if cons. $\Psi_1, \Psi_2 \supset \Gamma$ then $\operatorname{Val}_{\Psi_1} \phi = \operatorname{Val}_{\Gamma} \phi = \operatorname{Val}_{\Psi_2} \phi$. In particular $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi$ will never happen.

Every step in their constructions has become equal.

1 Rewriting Leitgeb's definition from Φ to Γ

- $\bullet \ \Phi_{\alpha} = \pm \Gamma_{\alpha}$
- So we can define $\Gamma_{\alpha+1} = \Delta_c(\Gamma_\alpha)$ where $\Delta_c(\Gamma) = \{\phi | \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \land \operatorname{Val}_{\Gamma} \phi = 1\}.$

 $2 \phi \operatorname{cdep}_{\Gamma}(\pm \Gamma) \leftrightarrow \forall \Psi \supset \Gamma, \operatorname{Val}_{\Psi} \phi = \operatorname{Val}_{\Gamma} \phi$

- (\rightarrow) for consistent $\Psi \supset \Gamma$, $\Psi \cap \pm \Gamma = \Gamma$.
- (\leftarrow) if cons. $\Psi_1, \Psi_2 \supset \Gamma$ then $\operatorname{Val}_{\Psi_1} \phi = \operatorname{Val}_{\Gamma} \phi = \operatorname{Val}_{\Psi_2} \phi$. In particular $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi$ will never happen.

3 The supervaluation operator FV is equal to Δ_c .

Groundedness

• Future research we have "inflated" Leitgeb–groundedness to Cantini–groundedness. Can we "deflate" Cantini–groundedness to Leitgeb–groundedness?

Groundedness

• Future research we have "inflated" Leitgeb–groundedness to Cantini–groundedness. Can we "deflate" Cantini–groundedness to Leitgeb–groundedness?

(日)、(型)、(E)、(E)、(E)、(Q)

To test two interpretations:

Groundedness

- Future research we have "inflated" Leitgeb–groundedness to Cantini–groundedness. Can we "deflate" Cantini–groundedness to Leitgeb–groundedness?
- To test two interpretations:
 - There is a unique set of grounded sentences and in no other combination of parameters will both approaches yield the same set.

Groundedness

- Future research we have "inflated" Leitgeb–groundedness to Cantini–groundedness. Can we "deflate" Cantini–groundedness to Leitgeb–groundedness?
- To test two interpretations:
 - There is a unique set of grounded sentences and in no other combination of parameters will both approaches yield the same set.
 - 2 By changing parameters we can make the approaches agree over *multiple* different sets of grounded sentences.

Groundedness

- Future research we have "inflated" Leitgeb–groundedness to Cantini–groundedness. Can we "deflate" Cantini–groundedness to Leitgeb–groundedness?
- To test two interpretations:
 - There is a unique set of grounded sentences and in no other combination of parameters will both approaches yield the same set.
 - 2 By changing parameters we can make the approaches agree over *multiple* different sets of grounded sentences.

Aboutness

Groundedness

- Future research we have "inflated" Leitgeb–groundedness to Cantini–groundedness. Can we "deflate" Cantini–groundedness to Leitgeb–groundedness?
- To test two interpretations:
 - There is a unique set of grounded sentences and in no other combination of parameters will both approaches yield the same set.
 - 2 By changing parameters we can make the approaches agree over *multiple* different sets of grounded sentences.

Aboutness

Whose notion responds best to pre-theoretic concept of groundedness?

Groundedness

- Future research we have "inflated" Leitgeb–groundedness to Cantini–groundedness. Can we "deflate" Cantini–groundedness to Leitgeb–groundedness?
- To test two interpretations:
 - There is a unique set of grounded sentences and in no other combination of parameters will both approaches yield the same set.
 - 2 By changing parameters we can make the approaches agree over *multiple* different sets of grounded sentences.

Aboutness

- Whose notion responds best to pre-theoretic concept of groundedness?
- If there is a unique grounded set, then groundedness might actually derive from a much more general theory of aboutness.

Conclusion

Overview

Conclusion

Overview

Paradoxes are problematic for the definition of truth.

Conclusion

Overview

- Paradoxes are problematic for the definition of truth.
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences."

- Paradoxes are problematic for the definition of truth.
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences."
- "Grounded is one, Cantini and Leitgeb call it different names."

- Paradoxes are problematic for the definition of truth.
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences."
- "Grounded is one, Cantini and Leitgeb call it different names."

(日)、(型)、(E)、(E)、(E)、(Q)

Groundedness: Kripkean by-product, guide for Leitgeb.

- Paradoxes are problematic for the definition of truth.
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences."
- "Grounded is one, Cantini and Leitgeb call it different names."
 - Groundedness: Kripkean by-product, guide for Leitgeb.
 - There is shown a common basis in their notions of groundedness.

- Paradoxes are problematic for the definition of truth.
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences."
- "Grounded is one, Cantini and Leitgeb call it different names."
 - Groundedness: Kripkean by-product, guide for Leitgeb.
 - There is shown a common basis in their notions of groundedness.

(日)、(型)、(E)、(E)、(E)、(Q)

Are they fundamentally different or the same?

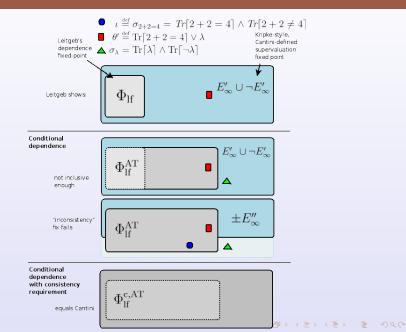
- Paradoxes are problematic for the definition of truth.
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences."
- "Grounded is one, Cantini and Leitgeb call it different names."
 - Groundedness: Kripkean by-product, guide for Leitgeb.
 - There is shown a common basis in their notions of groundedness.

(日)、(型)、(E)、(E)、(E)、(Q)

Are they fundamentally different or the same?

Grazie per l'attenzione

Suggestions, critiques:
 Floris van Vugt, f.t.vanvugt@gmail.com



Simple dependence

 ϕ is sensitive only to the $\Phi\text{--sentences}$ being true or not

Conditionality

 ϕ is sensitive only to the $\Phi-$ sentences being true or not, but presupposing $\Sigma-$ sentences are all true.

Conditional c-dependence

 ϕ is sensitive only to the $\Phi-{\rm sentences}$ being true or not, presupposing

- Σ -sentences true, and
- that the extension of Tr is consistent.

Kripke formally I

Given classical \mathcal{L} , $i_{\mathcal{L}}$ interpret \mathcal{L} into a domain D. Suppose $E \subset D$ (codes of) true \mathcal{L}_{Tr} -sentences, and $A \subset D$ false sentences.

$$i_{\mathcal{L}_{\mathsf{Tr}}(E,A)}(\mathsf{Tr})(d) = egin{cases} 1 & ext{if } d \in E \ 0 & ext{if } d \in A \ \uparrow & ext{otherwise} \end{cases}$$

and Kleene's strong three-valued logic. Given $\mathcal{L}_{Tr}(E, A)$ we can find

$$J_{(E,A)} \stackrel{\text{\tiny def}}{=} \{ \phi \in \mathcal{L}_{\mathsf{Tr}} | \phi \text{ is true under } i_{\mathcal{L}_{\mathsf{Tr}}(E,A)} \}$$
(2)

$$J^{-}_{(E,A)} \stackrel{\text{\tiny def}}{=} \{\phi \in \mathcal{L}_{\mathsf{Tr}} | \phi \text{ is false under } i_{\mathcal{L}_{\mathsf{Tr}}(E,A)} \}$$
(3)

Given $E \subset \mathcal{L}_{Tr}$ a "set of negatives" is defined: $\neg E \stackrel{\text{def}}{=} \{\phi | \neg \phi \in E\}$. Since $\mathcal{L}_{Tr}(E, A)$ is a closed language, we find that $J_{(E,A)}^- = \neg J_{(E,A)}$.

If we generalise the above procedure we find a sequence $(E_{\alpha})_{\alpha \in On}$ as follows:

•
$$E_0 = \emptyset$$
,

•
$$E_{\alpha+1} = J_{(E_{\alpha}, \neg E_{\alpha})}$$
 and

•
$$E_{\beta} = \bigcup_{\alpha < \beta} E_{\alpha}$$

Monotonicity \rightarrow fixed point E_{∞} .

A sentence ϕ of \mathcal{L}_{Tr} is defined to be *grounded* if it has a truth value (i.e. true or false) in $\mathcal{L}_{Tr}(E_{\infty}, \neg E_{\infty})$. Hence ϕ is grounded iff $\phi \in E_{\infty} \cup \neg E_{\infty}$.

If $\phi \in \mathcal{L}_{\mathsf{Tr}}$ then $\mathsf{Val}_{\Psi}\phi$ denotes the truth value in the standard model of arithmetic enriched with a truth predicate which has extension $\Psi \subset \mathcal{L}_{\mathsf{Tr}}$. We define that ϕ depends on $\Phi \subset \mathcal{L}_{\mathsf{Tr}}$ iff for all $\Psi_1, \Psi_2 \subset \mathcal{L}_{\mathsf{Tr}}$, we have that if $\mathsf{Val}_{\Psi_1}\phi \neq \mathsf{Val}_{\Psi_2}\phi$ then $\Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$.

Then Leitgeb shows that $D_{\phi} \stackrel{\text{def}}{=} \{ \Phi \subset \mathcal{L}_{\mathsf{Tr}} | \phi \text{ depends on } \Phi \}$ is a filter. Similarly $D^{-1}(\Phi) \stackrel{\text{def}}{=} \{ \phi \in \mathcal{L}_{\mathsf{Tr}} | \phi \text{ depends on } \Phi \}$. Leitgeb shows D^{-1} to be monotonic.

We define an ordinal sequence $(\Phi_{\alpha})_{\alpha \in On}$ as follows:

•
$$\Phi_0 = \emptyset$$
,

•
$$\Phi_{\alpha+1} = D^{-1}(\Phi_{\alpha})$$
 and

$$\Phi_{\beta} = \bigcup_{\alpha < \beta} \Phi_{\alpha}.$$

Least fixed point Φ_{If} of grounded sentences.

 ${\rm Val}_\Psi\phi$ represents the truth value of the formula ϕ given that the Tr–predicate's extension is $\Psi.$

A set $\Psi \subset \mathcal{L}_{\mathsf{Tr}}$ will be considered *consistent* if, whenever $\psi \in \Psi$, then $\neg \psi \notin \Psi$.

Definition of FV, for all $\Phi \subset \mathcal{L}_{Tr}$, $FV(\Phi) \stackrel{\text{def}}{=} \{\phi \in \mathcal{L}_{Tr} | \forall \Psi \supset \Phi, \text{ s.t. } \Psi \text{ is consistent, } Val_{\Psi}\phi = 1\}$, Monotonous and consistency-preserving. A sequence $(E'_{\alpha})_{\alpha \in On}$ is defined:

$$E_0' = \emptyset,$$

•
$$E'_{\alpha+1} = \mathsf{FV}(E'_{\alpha})$$
 and

• $E'_{\beta} = \bigcup_{\alpha < \beta} E'_{\alpha}$. Its least fixed point is called E'_{∞} .

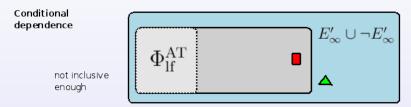
Conditional dependence

 $\phi \operatorname{dep}_{\Sigma}(\Phi) \stackrel{\text{\tiny def}}{=} \text{for all } \Psi_1, \Psi_2 \subset \mathcal{L}_{\mathsf{Tr}} \text{ s.t. } \Sigma \subset \Psi_1, \Psi_2 \text{ it holds that}$ $\operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$

$$\begin{aligned} & \Phi_0^{\mathsf{AT}} = \emptyset, \\ & \Gamma_0^{\mathsf{AT}} = \emptyset, \end{aligned} \\ & \Phi_{\alpha+1}^{\mathsf{AT}} = \mathsf{D}_{\Gamma_{\alpha}^{\mathsf{AT}}}^{-1} (\Phi_{\alpha}^{\mathsf{AT}}), \\ & \Gamma_{\alpha+1}^{\mathsf{AT}} = \{\phi \in \Phi_{\alpha+1}^{\mathsf{AT}} | \mathsf{Val}_{\Gamma_{\alpha}^{\mathsf{AT}}} \phi = 1 \}, \end{aligned} \\ & \Phi_{\beta}^{\mathsf{AT}} = \bigcup_{\alpha < \beta} \Phi_{\alpha}^{\mathsf{AT}}, \\ & \Gamma_{\beta}^{\mathsf{AT}} = \bigcup_{\alpha < \beta} \Gamma_{\alpha}^{\mathsf{AT}}, \end{aligned} \\ & \text{sing that for all } \Phi, \Phi', \Sigma, \Sigma' \subset \mathcal{L}_{\mathsf{Tr}}, \text{ for all } \alpha, \beta \in \mathsf{On}, \end{aligned}$$

$$\begin{array}{ll} \textbf{If } \Phi \subset \Phi' \text{ and } \Sigma \subset \Sigma' \text{ then } D_{\Sigma}^{-1}(\Phi) \subset D_{\Sigma'}^{-1}(\Phi') \\ \textbf{2} \ (a) \ \Phi_{\alpha}^{\mathsf{AT}} \subset \Phi_{\alpha+1}^{\mathsf{AT}} \text{ and } (b) \ \Gamma_{\alpha}^{\mathsf{AT}} \subset \Gamma_{\alpha+1}^{\mathsf{AT}} \\ \textbf{5o a least fixed point, called } \Phi_{\mathsf{lf}}^{\mathsf{AT}}. \end{array}$$

III: Consistency: removing from Cantini

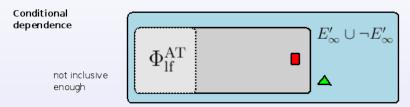


• **Problem** $\sigma_{\lambda} = \operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

• σ_{λ} false given any consistent Tr predicate: Cantini–grounded.

• σ_{λ} depends on $\{\lambda, \neg\lambda\}$: not Leitgeb–conditional–grounded.

III: Consistency: removing from Cantini



• Problem $\sigma_{\lambda} = \operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

- σ_{λ} false given any consistent Tr predicate: Cantini–grounded.
- *σ*_λ depends on {λ, ¬λ}: not Leitgeb−conditional−grounded.
- **Solution** remove the consistency requirement in Cantini's FV.
 - $\mathsf{FV}'(\Phi) \stackrel{\text{\tiny def}}{=} \{ \phi | \text{for any } \Psi \supset \Phi, \mathsf{Val}_{\Psi} \phi = 1 \}$
 - Thus obtained $\pm E''_{\infty}$ too exclusive: $\sigma_{2+2=4}$ becomes ungrounded.
 - $\sigma_{2+2=4}$ can be false in inconsistent Tr extending $\{2+2=4\}$: not Cantini'-grounded.
 - $\sigma_{2+2=4}$ depends on $\{2+2=4, 2+2 \neq 4\}$: Leitgeb-grounded.

Conditional c-dependence

 $\begin{array}{l} \phi \operatorname{cdep}_{\Sigma}(\Phi) \stackrel{\text{\tiny def}}{=} \text{for all } \textit{consistent} \\ \Psi_1, \Psi_2 \supset \Sigma : \operatorname{Val}_{\Psi_1} \phi \neq \operatorname{Val}_{\Psi_2} \phi \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi. \end{array}$

$$\begin{aligned} & \Phi_{0}^{\mathrm{c,AT}} = \emptyset, \\ & \Gamma_{0}^{\mathrm{c,AT}} = \emptyset, \end{aligned} \\ & \Phi_{\alpha+1}^{\mathrm{c,AT}} = \mathsf{D}_{\mathrm{c},\Gamma_{\alpha}^{\mathrm{c,AT}}}^{-1} (\Phi_{\alpha}^{\mathrm{c,AT}}), \\ & \Gamma_{\alpha+1}^{\mathrm{c,AT}} = \{\phi \in \Phi_{\alpha+1}^{\mathrm{c,AT}} | \mathsf{Val}_{\Gamma_{\alpha}^{\mathrm{c,AT}}} \phi = 1 \} \end{aligned}$$
$$& \Phi_{\beta}^{\mathrm{c,AT}} = \bigcup_{\alpha < \beta} \Phi_{\alpha}^{\mathrm{c,AT}}, \\ & \Gamma_{\beta}^{\mathrm{c,AT}} = \bigcup_{\alpha < \beta} \Gamma_{\alpha}^{\mathrm{c,AT}} \end{aligned}$$

For all
$$\alpha \in \mathsf{On}$$
, $\Phi^{\mathrm{c,AT}}_{\alpha} = \pm \Gamma^{\mathrm{c,AT}}_{\alpha}$

Redefinition

$$\Gamma_{0}^{c,AT} = \emptyset,$$

$$\Gamma_{\alpha+1}^{c,AT} = \{ \phi \in \mathsf{D}_{c,\Gamma_{\alpha}^{c,AT}}^{-1}(\pm\Gamma_{\alpha}^{c,AT}) | \mathsf{Val}_{\Gamma_{\alpha}^{c,AT}} \phi = 1 \} \stackrel{\text{def}}{=} \Delta_{c}(\Gamma_{\alpha}^{c,AT}),$$

$$\Gamma_{\beta}^{c,AT} = \bigcup_{\alpha < \beta} \Gamma_{\alpha}^{c,AT}.$$

•
$$\phi \operatorname{cdep}_{\Phi}(\pm \Phi) \leftrightarrow \phi \in \pm \mathsf{FV}(\Phi)$$

• For any consistent $\Phi \subset \mathcal{L}_{\mathsf{Tr}}$, $\Delta_c(\Phi) = \mathsf{FV}(\Phi)$

For all
$$\alpha \in On$$
, $\Phi_{\alpha}^{c,AT} = \pm E'_{\alpha}$ and $\Gamma_{\alpha}^{c,AT} = E'_{\alpha}$.

An infinite hierarchy of languages $(L_n)_{n \in \mathbb{N}}$ each of which includes a truth predicate Tr_n for the previous.

An infinite hierarchy of languages $(L_n)_{n \in \mathbb{N}}$ each of which includes a truth predicate Tr_n for the previous.

An infinite hierarchy of languages $(L_n)_{n \in \mathbb{N}}$ each of which includes a truth predicate Tr_n for the previous.

Review

• Liar λ impossible to formulate.

An infinite hierarchy of languages $(L_n)_{n \in \mathbb{N}}$ each of which includes a truth predicate Tr_n for the previous.

Review

- Liar λ impossible to formulate.
- However, linguistically unsatisfying "Tr is not one, Tarski calls it many (Tr_n)_{n∈ℕ}."

Consistency-dependence

 $\phi \operatorname{\mathsf{dep'}}(\Phi) \leftrightarrow \operatorname{all\ consistent\ } \Psi_1, \Psi_2, \operatorname{\mathsf{Val}}_{\Psi_1} \phi \neq \operatorname{\mathsf{Val}}_{\Psi_2} \phi \to \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$

Answer: same problem as before, $\theta = \text{Tr}[2+2=4] \lor \lambda$ **Proposition** $\theta \operatorname{dep}'(\Phi) \leftrightarrow \{2+2=4,\lambda\} \subset \Phi$ **Proof** Using $\operatorname{Val}_{\Phi} \theta = 1 \leftrightarrow \lambda \notin \Phi \lor 2+2 = 4 \in \Phi$.

• \leftarrow : Take any consistent Ψ_1, Ψ_2 s.t. $1 = \mathsf{Val}_{\Psi_1} \theta \neq \mathsf{Val}_{\Psi_2} \theta = 0$. Therefore $\lambda \notin \Psi_1 \lor 2 + 2 = 4 \in \Psi_1$ and $\lambda \in \Psi_2 \land 2 + 2 = 4 \notin \Psi_2$. Sufficient is to show $\Psi_1 \cap \{\lambda, 2 + 2 = 4\} \neq \Psi_2 \cap \{\lambda, 2 + 2 = 4\}$. Clearly $\Psi_2 \cap \{\lambda, 2 + 2 = 4\} = \{\lambda\}$ but it cannot be that $\Psi_1 \cap \{\lambda, 2 + 2 = 4\} = \{\lambda\}$ for we concluded $\lambda \notin \Psi_1 \lor 2 + 2 = 4 \in \Psi_1$.

Proposition (recall) $\theta \operatorname{dep}'(\Phi) \leftrightarrow \{2+2=4, \lambda\} \subset \Phi$ **Proof** part II

- →: suppose the θ dep'(Φ) but $\{2 + 2 = 4, \lambda\} \not\subset \Phi$. One of the following must be true:
 - λ ∉ Φ. Clearly 1 = Val_θθ ≠ Val_{λ}θ = 0. Because θ dep'(Φ) it would follow that Ø ∩ Φ ≠ {λ} ∩ Φ = Ø, contradiction.
 - 2+2=4 $\notin \Phi$. Now 0 = Val_{{ λ}} $\theta \neq$ Val_{{ λ ,2+2=4}} θ = 1. Because θ dep'(Φ) this means { λ } $\cap \Phi \neq$ { λ , 2+2=4} $\cap \Phi$ = { λ } $\cap \Phi$, absurd.

Assumptions It has been assumed θ is consistent with itself and with 2 + 2 = 4.