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Abstract

In this paper Geometric Algebra will be applied to the problem of
finding a parametrisation of elementary mathematical shapes in three-
dimensional space. The examples of a sphere and a single torus will
be used. It will be shown that these parametrisations can be given
in both exponential and trigonometrical notation and that they are
equivalent. Secondly, using the parametrisation the tangent vectors
along the surface will be calculated by differentiating the parametri-
sation over the parameters. Finally the surface area of the shapes will
be calculated by integrating the magnitude of the wedge product over
the domains of the parameters.

1 Introduction

1.1 Outline

The sphere and the torus will be considered elementary mathematical shapes,
and for each a parametrisation in three-dimensional space will be found, and
consequently an expression for their tangent vectors, and finally, with the
help of this, their surface area and volume.
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In both cases choose the simplest coordinate system will be chosen, since
once there is an expression for the parametrisation of them in any coordi-
nate system, it can be applied in any coordinate system via simple rotation
and reflection – which, especially in Geometric Algebra, has become easy.
The free choice of the coordinate system is the result of the rotation and
translation invariance of the problem.

1.2 Notation

In this paper, bivectors will be notated using the wedge, such that, for vectors
a, b, c:

a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∧ b = −b ∧ a (1)

Also, the geometric product will be assumed to be defined as the sum of
the inner (dot-) and outer (wedge-)product:

ab = a · b + a ∧ b (2)

And

a · b =
1

2
(ab + ba) a ∧ b =

1

2
(ab− ba) (3)

Orthonormal vectors will be used and denoted as en, with e0 correspond-
ing to the time-dimension. Therefore the following, by definition, holds (note
that, due to their obvious vector nature, any arrows or bold face in these vari-
ables will, for convenience of notation and reading, be omitted):

ei · ej = 0 for i 6= j (4)

ei · ei ≡ 1 for i = 0

ei · ei ≡ −1 for i > 0

2 Parametrising a Sphere

2.1 Parametrisation

A vector is taken, whose length equals the radius of the sphere that we
wish to parametrise, which, for now, we will call r, and, for the purpose of
convenience, it is, arbitrarily, put along the e1-axis.

By rotating it in the e1, e2-plane by an angle φ1, it will point to anywhere
on a circle of radius r centered in the origin, for 0 ≤ φ1 ≤ 2π. By rotating it
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consequently in the e1, e3-plane by an angle φ2, it will point along the entire
sphere for 0 ≤ φ2 ≤ 2π. There then is a parametrisation of the sphere and
at the same time a method to uniquely specify any point on the sphere by
two variables – the angles φ1 and φ2.

Using Geometric Algebra, it is possible to find an expression for these
rotations. We can write it trigonometrically since eαeiej = cos α+(eiej) sin α
for i, j > 0 [1].

First, the following quantities are defined:

R12 ≡ cos
φ1

2
− e1e2 sin

φ1

2

R̃12 ≡ cos
φ1

2
+ e1e2 sin

φ1

2

R13 ≡ cos
φ2

2
− e1e3 sin

φ2

2

R̃13 ≡ cos
φ2

2
+ e1e3 sin

φ2

2
(5)

This yields, for any point p on the sphere (substituting Ci/k ≡ cos φi

k
,

Si/k ≡ sin φi

k
)

p = R13R12re1R̃12R̃13

= r(C2/2 − e1e3S2/2)(C1 − S1e1e2)(C2/2 + e1e3S2/2)

= r(C1C
2
2/2e1 + C2/2C1S2/2e1e1e3 − S1C

2
2/2e2 − C2/2S1S2/2e2e1e3

−S2/2C1C2/2e1e3e1 − S2
2/2C1e1e3e1e1e3 +

S2/2S1C2/2e1e3e2 + S2
2/2S1e1e3e2e1e3)

= r(C1C
2
2/2e1 − C2/2C1S2/2e3 − S1C

2
2/2e2 − C2/2S1S2/2e2e1e3

−S2/2C1C2/2e3 − S2
2/2C1e1 + S2/2S1C2/2e1e3e2 − S2

2/2S1e2)

= r(C1C
2
2/2e1 − C2/2C1S2/2e3 − S1C

2
2/2e2

−S2/2C1C2/2e3 − S2
2/2C1e1 − S2

2/2S1e2)

= r(C1C2e1 − S1e2 − C1S2e3)

This is in line what could be expected from the general rotations. For
it can be written that R12e1R̃12 = cos φ1e1 − sin φ1e2, where we define x ≡
r cos φ1 and y ≡ −r sin φ1. When a second rotation is applied, this time in
the e1e3-plane, then:

R13(xe1 + ye2)R̃13 = x cos φ2e1 + ye2 − x sin φ2e3
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= r(cos φ1 cos φ2e1 − sin φ1e2 − cos φ1 sin φ2e3) (6)

2.2 Tangent Vectors

The tangent vectors are obtained by differentiating the parametrisation with
respect to the parameters: t1 = ∂p

∂φ1
and t2 = ∂p

∂φ2
.

Before computing them, it seems wise to establish the following.
The switching of R̃12 and e1e2 is allowed since for i 6= j, i, j > 0 it holds

that eiejR̃ij = eiej(cos φn

2
+eiej sin φn

2
) = cos φn

2
eiej+eiej sin φn

2
eiej = R̃ijeiej.

The same then also holds for R12, since it differs only from R̃12 in a minus
sign in front of the sine.

The switching of R̃13 and e1e2 generates a minus sign inside Rij and
therefore changes the pair of Rij and R̃ij into one another, since e1e2R̃13 =
e1e2(cos φ2

2
+ e1e3 sin φ2

2
= cos φ2

2
e1e2 − e1e3 sin φ2

2
e1e2) = R13e1e2.

Now computing the tangent vectors, the following expressions are ob-
tained:

t1 =
∂p

∂φ1

= R13(R12re1
∂R̃12

∂φ1

+
∂R12

∂φ1

re1R̃12)R̃13

= R13(
1

2
R12re1e1e2R̃12 −

1

2
e1e2R12re1R̃12)R̃13

=
1

2
(R13R12re1R̃12e1e2R̃13 −R13e1e2R12re1R̃12R̃13)

=
1

2
(R13R12re1R̃12R13e1e2 + R13R12re1R̃12R13e1e2)

= R13R12re1R̃12R13e1e2 (7)

t2 =
∂p

∂φ2

= R13(R12re1R̃12
∂R̃13

∂φ2

) +
∂R13

∂φ2

(R12re1R̃12R̃13)

=
1

2
(pe1e3 − e1e3p) = p ∧ (e1e3) (8)

The same tangent vectors can be obtained using the formulation in terms
of sines and cosines:

t1 =
∂p

∂φ1

= r(− sin φ1 cos φ2e1 − cos φ1e2 + sin φ1 sin φ2e3) (9)

t2 =
∂p

∂φ2

= r(− cos φ1 sin φ2e1 − cos φ1 cos φ2e3) (10)
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2.3 Surface Area

To compute the surface integral of this shape, the length of the wedge vector
of the two tangent vectors will be integrated along all possible values of the
parameters to yield the surface.

δA = t1 ∧ t2

‖δA‖ =
√
−(t1 ∧ t2)2 (11)

Substituting the trigonometric formulation of the tangent vectors (in this
case the simplest alternative) the following expression is obtained:

t1t2
r2

= (S1C2e1 + C1e2 − S1S2e3)(C1S2e1 + C1C2e3)

= −S1S2C1C2 + S1C1C
2
2e1e3 + S2C

2
1e2e1

+C2
1C2e2e3 − S1S

2
2C1e3e1 + S1S2C1C2

= S1C1e1e3 + S2C
2
1e2e1 + C2

1C2e2e3 (12)
t2t1
r2

= (C1S2e1 + C1C2e3)(S1C2e1 + C1e2 − S1S2e3)

= −S1S2C1C2 + S2C
2
1e1e2 − S1S

2
2C1e1e3

+S1C1C
2
2e3e1 + C2

1C2e3e2 + S1S2C1C2

= S2C
2
1e1e2 − S1C1e1e3 + C2

1C2e3e2 (13)

It can then be established that

t1t2 + t2t1
r2

= 0 =
2(t1 ∧ t2)

r2
(14)

This means that t1 · t2 = 0 and therefore t1 ∧ t2 = t1t2 and, consequently,
t1t2 = t1 ∧ t2 = −(t2 ∧ t1) = −t2t1.

It is then possible to rewrite the original equation for the surface element:

‖δA‖ =
√
−(t1t2)2 =

√
−t1t2t1t2 =

√
t21t

2
2 (15)

In computing the squares, it can be established that for i, j, k > 0 and
i 6= j 6= k 6= i, it holds that (ceiej)

2 = −c2eieiejej = −c2 and (ceiej)(dekei) =
cdeiejekei = −cdekeieiej = −(dekei)(ceiej). Due to this latter property the
cross terms in the product (t1t2)

2 vanish, and due to the former property the
bivector products (but not their coefficients).
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This results in:

‖δA‖ = r2
√

S2
1C

2
1 + S2

2C
4
1 + C4

1C
2
2

= r2
√

C2
1(S2

1 + C2
1(S2

2 + C2
2))

= r2
√

(cos φ1)2 (16)

The surface area of the sphere is then given by the following integral:

Ss =
∫ 2π

0

∫ 2π

0
‖δA‖dφ1dφ2 (17)

However, this integral integrates over all possible angles, and thereby
would go over the entire sphere twice. Since the first integral, over all angles
φ1, results in a circle. Integrating this result over all angles φ2 from 0 to
π, the surface of the sphere is complete. Integrating φ2 from π to 2π is
therefore superfluous and would result in twice the real surface area of the
sphere. Rewriting the integral the following expression is obtained:

Ss =
∫ 2π

0

∫ 2π

0
‖δA‖dφ1dφ2

= r2
∫ π

0

∫ 2π

0

√
(cos φ1)2dφ1dφ2

= r2
∫ π

0
4dφ2

= 4πr2 (18)

2.4 Volume

The volume is obtained by evaluating the integral of the surface of all possible
spheres of small radii r′ such that 0 ≤ r′ ≤ r. This results in the following
integral:

Vs =
∫ r

0
4πr′2dr′ =

4

3
πr′3|r0

=
4

3
πr3 (19)
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3 Parametrising a Torus

3.1 Parametrisation

A vector is taken, of length r, and, for the purpose of convenience, it is,
arbitrarily, put along the e1-axis. By rotating it in the e1, e2-plane by an
angle φ1, it will point to anywhere on a circle of radius r centered in the
origin, for 0 ≤ φ1 ≤ 2π.

Next this new rotated vector is pushed outward in the e1e2-plane, by
adding a multiple of the e1-base vector to it. This multiple is u and will be
the radius of the torus. If u = 0 the situation is the same as before and it is
a sphere that is parametrised.

By rotating it consequently in the e1, e3-plane by an angle φ2, it will
point, for the right choices of the coefficients anywhere on the torus, and
0 ≤ φ2 ≤ 2π. There then is a parametrisation of the torus and at the same
time a method to uniquely specify any point on it by two variables – the
angles φ1 and φ2.

Using Geometric Algebra, it is possible to find an expression for these
rotations. We can write it trigonometrically since eαeiej = cos α+(eiej) sin α
for i, j > 0.

The same definitions given in the set of equations 5 will be used.
This yields, for any point q on the torus (substituting Ci/k ≡ cos φi

k
,

Si/k ≡ sin φi

k
)

q = R13(R12re1R̃12 + ue1)R̃13

= R13R12re1R̃12R̃13 + R13ue1R̃13

= p + R13ue1R̃13

This is in line what could be expected from the general rotations. For
it can be written that R12e1R̃12 = cos φ1e1 − sin φ1e2, where we define x ≡
r cos φ1 + u and y ≡ −r sin φ1. When a second rotation is applied, this time
in the e1e3-plane, then:

q = R13(xe1 + ye2)R̃13

= x cos φ2e1 + ye2 − x sin φ2e3

= r cos φ1 cos φ2e1 + u cos φ2e1 − r sin φ1e2

−r cos φ1 sin φ2e3 − u sin φ2e3

= r(cos φ1 cos φ2e1 − sin φ1e2 − cos φ1 sin φ2e3) + u(cos φ2e1 − sin φ2e3)
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3.2 Tangent Vectors

To obtain the tangent vectors, the derivatives of the parametrisation r with
respect to φ1 and φ2 will be computed using the rules for switching terms
discovered in section 2.2:

t1 =
∂q

∂φ1

=
∂p

∂φ1

= R13R12re1R̃12R13e1e2 (20)

t2 =
∂q

∂φ2

=
∂p

∂φ2

+
∂R13

∂φ2

ue1R̃13 + R13ue1
∂R̃13

∂φ2

=
∂p

∂φ2

+
1

2
(e1e3R13ue1R̃13 −R13ue1R̃13e1e3) (21)

= (p ∧ e1e3) + (R13ue1R̃13 ∧ e1e3) = (p + R13ue1R̃13) ∧ e1e3 (22)

The trigonometrical equivalent is as follows:

t1 =
∂q

∂φ1

= r(− sin φ1 cos φ2e1 − cos φ1e2 + sin φ1 sin φ2e3) =
∂p

∂φ1

(23)

t2 =
∂q

∂φ2

= r(− cos φ1 sin φ2e1 − cos φ1 cos φ2e3)

+u(− sin φ2e1 − cos φ2e3) (24)

3.3 Surface Area

Denoting the tangent vectors of the sphere as t1s, t2s and substituting the
tangent vector correcting the sphere to a torus tu ≡ u(− sin φ2e1 − cos φ2e3),
it can be written that:

t1 = t1s (25)

t2 = t2s + tu (26)

And therefore

t1t2 + t2t1 = t1s(t2stu) + (t2stu)t1s = t1st2s + t1stu + t2st1s + tut1s

= t1stu + tut1s (27)

Elaborating t1stu, the following expression is obtained:

t1stu
ru

= (S1C2e1 + C1e2 − S1S2e3)(S2e1 + C2e3)
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= S1e1e3 + S2C1e2e1 + C1C2e2e3 (28)
tut1s

ru
= (S2e1 + C2e3)(S1C2e1 + C1e2 − S1S2e3)

= S2C1e1e2 − S1e1e3 + C1C2e3e2 (29)

Thus t1stu + tut1s = 0 = t1t2 + t2t1 and therefore t1 ∧ t2 = t1t2.
It is interesting to see that not only t1s and t2s are perpendicular (their

dot product equals zero), but also t1s and tu. Furthermore, these vanishing
sums of products is exactly the same as what happened in the case of the
sphere. It is general and caused by the fact that, each of the products ceidej

and dejcdei necessarily become each other’s negative, since c and d are scalars
and ei and ej by definition anticommute.

It is therefore only necessary for the products cdeiei to cancel out. In other
words, in the general multiplication (ae1 + be2 + ce3)(fe1 + ge2 + he3) the
cross terms (eiej) will cancel the reverse product, therefore perpendicularity
only requires an additional condition on the coefficients for the symmetric
terms (eiei), and it is in this case af + bg + ch = 0. This can be recognised
as the inner product and requiring it to be zero for perpendicular vectors is
equivalent to the non-Geometric Algebra vector calculus.

The surface element can now be written as:

‖δA‖ =
√
−(t1t2)2 =

√
−(t1st2s + t1stu)2 (30)

However, since tu and t2s are not generally perpendicular, it will not be
wise to expand this square. Rather, an alternative approach is chosen.

Furthermore, rewriting the tangent vector corresponding to φ2 yields
−t2 = r(C1S2e1 +C1C2e3)+u(S2e1 +C2e3) = (rC1 +u)S2e1 +(rC1 +u)C2e3.
Substituting m ≡ rC1 + u, it can be noted that m2 = r2C2

1 + 2ruC1 + u2.
The case of the sphere (for u = 0) it is evident that m2 = r2(cos φ1)

2 and
this was the result earlier on.

Then the squares of the tangent vectors can be computed:

−t21 = r2(S1C2e1 + C1e2 − S1S2e3)
2 = r2(S2

1C
2
2 + C2

1 + S2
1S

2
2) = r2

−t21 = ((rC1 + u)S2e1 + (rC1 + u)C2e3)
2 = m2(S2

2 + C2
2) = m2

For the surface element ‖δA‖, it holds that

‖δA‖ =
√
−t21t

2
2 =

√
r2(rC1 + u)2 = r(rC1 + u) (31)
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The integral over all possible values for the parameters yields:

St =
∫ 2π

0

∫ 2π

0
‖δA‖dφ1dφ2

=
∫ 2π

0

∫ 2π

0
r(r cos φ1 + u)dφ1dφ2

=
∫ 2π

0
(r2 sin φ1|2π

0 + ruφ1|2π
0 )dφ2

=
∫ 2π

0
(2πru)dφ2

= 2πruφ2|2π
0

= 4π2ru (32)

And this is a general expression for the surface area of any torus.

3.4 Volume

Interestingly, the same integral can be applied to finding the volume of the
torus. It includes an additional integral that integrates the surface area over
all tori of smaller radii r′, 0 ≤ r′ ≤ r. Naturally, this will yield the volume.

The following expression is obtained:

Vt =
∫ 2π

0

∫ 2π

0

∫ r

0
‖δA‖dr′dφ1dφ2

=
∫ 2π

0

∫ 2π

0

∫ r

0
r′(r′ cos φ1 + u)dr′dφ1dφ2

=
∫ 2π

0

∫ 2π

0
(
1

3
r′3 cos φ1 +

1

2
r′2u)|r0dφ1dφ2

=
∫ 2π

0

∫ 2π

0
(
1

3
r3 cos φ1 +

1

2
r2u)dφ1dφ2

=
∫ 2π

0

1

3
r3 sin φ1|2π

0 +
1

2
r2uφ1|2π

0 dφ2

=
∫ 2π

0
r2uπdφ2

= r2uπφ2|2π
0 = 2π2r2u (33)
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4 Conclusion

In conclusion, it has been shown in this paper that, using Geometric Algebra,
expressions can be obtained for the parametrisation of the sphere and torus,
and that these expressions can, in turn, be used to compute the surface area
and volume of these elementary shapes.

The procedure is also general; for any regular (differentiable) surface it
is conceivable that there can be constructed a parametrisation such that
integrating over the wedge product of the tangent vectors obtained from dif-
ferentiation of the parametrisation over the parameters results in the surface
area of the shape.

Furthermore, Geometric Algebra has an important advantage over other
computational methods and it is that there is a choice of representation: any
vector could be notated trigonometrically or exponentially and the result
would be the same.
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