Truth and paradox	Groundedness	Parameters	Perspectives	Questions

Paradoxes and Self-Reference

Floris T. van Vugt¹ floris.van.vugt@ens.fr

June 8, 2008

¹Research project supervised by Denis Bonnay, Département d'Etudes Cognitives, ENS Paris, denis.bonnay@ens.fr

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
●O	00	0000	O	
Truth				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

One

"Ekam sat vipraha bahudha vadanti" (*Rig Veda* 1.64.46)

Truth is one, the wise call it by many names.

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
●0	00	0000	O	
Truth				

Truth models relationship between language and external world.

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
●O	00	0000	O	
Truth				

Truth models relationship between language and external world.

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
●0	00	0000	O	
Truth				

Truth models relationship between language and external world.

Truth-predicate

A predicate Tr that applies to any sentence ϕ , such that (*T*-equivalence)

 $\mathrm{Tr}[\phi]$ if and only if ϕ

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

e.g. "[snow is white] is true" iff show is white.

Truth-predicate

A predicate Tr that applies to any sentence ϕ , such that (*T*-equivalence)

 $\mathrm{Tr}[\phi]$ if and only if ϕ

e.g. "[snow is white] is true" iff show is white.

Liar sentence

This sentence is not true.

(日)、(型)、(E)、(E)、(E)、(O)()

i.e. $\lambda = \neg \mathsf{Tr}[\lambda]$

Truth-predicate

A predicate Tr that applies to any sentence ϕ , such that (*T*-equivalence)

 $\operatorname{Tr}[\phi]$ if and only if ϕ

e.g. "[snow is white] is true" iff show is white.

Liar sentence

This sentence is not true.

(日)、(型)、(E)、(E)、(E)、(O)()

i.e. $\lambda = \neg \mathsf{Tr}[\lambda]$

Is it true or false?

Truth-predicate

A predicate Tr that applies to any sentence ϕ , such that (*T*-equivalence)

 $\mathrm{Tr}[\phi]$ if and only if ϕ

e.g. "[snow is white] is true" iff show is white.

Liar sentence

This sentence is not true.

(日)、(型)、(E)、(E)、(E)、(O)()

i.e. $\lambda = \neg \mathsf{Tr}[\lambda]$

Is it true or false?

•
$$\operatorname{Tr}[\lambda] \to \lambda \to \neg \operatorname{Tr}[\lambda]$$

• $\neg \operatorname{Tr}[\lambda] \to \neg \lambda \leftrightarrow \operatorname{Tr}[\lambda]$

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	००	0000	O	
Groundedness	informally			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の��

Reference

Reference to empirical facts

00	00	0000	
Groundedness	informally		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Reference

- Reference to empirical facts
 - "Snow is white" \rightarrow empirical world.

Groundodnog	s informally			
Truth and paradox	Groundedness	Parameters	Perspectives	Questions

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Groundodno	ss informally			
Truth and paradox	Groundedness	Parameters	Perspectives	Questions

Reference

Reference to empirical facts

- "Snow is white" \rightarrow empirical world.
- \blacksquare "[Snow is white] is true" \rightarrow "Snow is white" \rightarrow empirical world

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Self-reference

Groundodnog	se informally			
Truth and paradox	Groundedness	Parameters	Perspectives	Questions

Reference

Reference to empirical facts

- "Snow is white" \rightarrow empirical world.
- \blacksquare "[Snow is white] is true" \rightarrow "Snow is white" \rightarrow empirical world

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Self—reference

 $\lambda \to \lambda \to \lambda \to \dots$

	00	00	0000		
Truth and paradox Groundedness Parameters Perspectives Que	Truth and paradox	Groundedness	Parameters	Perspectives	Questions

Reference

Reference to empirical facts "Snow is white" → empirical world. "[Snow is white] is true" → "Snow is white" → empirical world Self-reference λ → λ → λ →

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Groundedness

Referring (in)directly to non-semantic states of affairs.

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	●○	0000	O	
Kripke's def	inition of truth	า		

In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	●○	0000	O	
Kripke's def	inition of truth	า		

In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kripke's def	inition of trut	h		
	0			
Truth and paradox	Groundedness	Parameters	Perspectives	Questions

In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.

Grounded: eventually attributed true or false

Krinke's def	inition of trut	h		
	0	0000		
Truth and paradox	Groundedness	Parameters	Perspectives	Questions

In three-valued logic: step-by-step filling in the extension and anti-extension of the Tr predicate, until saturation is reached.

All T-equivalences hold, but Val $(\lambda) = n$.

Grounded: eventually attributed true or false

• 2+2=4 depends on \emptyset (and supersets)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)

- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)
- Tr[Tr[2+2=4]] depends on $\{Tr[2+2=4]\}$

 Truth and paradox
 Groundedness
 Parameters
 Perspectives
 Questions

 co
 co
 co
 co
 co
 co

- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)
- Tr[Tr[2+2=4]] depends on $\{Tr[2+2=4]\}$

ϕ depends on a set of sentences

• ϕ is *sensitive* only to those sentences being true or not.

 Truth and paradox
 Groundedness
 Parameters
 Perspectives
 Questions

 co
 co
 co
 co
 co
 co

- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)
- Tr[Tr[2+2=4]] depends on $\{Tr[2+2=4]\}$
- $\lambda = \neg \operatorname{Tr}[\lambda]$ depends on λ (itself!)

ϕ depends on a set of sentences

• ϕ is *sensitive* only to those sentences being true or not.

 Truth and paradox
 Groundedness
 Parameters
 Perspectives
 Questions

 co
 co
 co
 co
 co
 co

- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)
- Tr[Tr[2+2=4]] depends on $\{Tr[2+2=4]\}$
- $\lambda = \neg \operatorname{Tr}[\lambda]$ depends on λ (itself!)

ϕ depends on a set of sentences

• ϕ is *sensitive* only to those sentences being true or not.

Leitgeb's definition of groundedness

Truth and paradox of the second secon

- 2+2=4 depends on \emptyset (and supersets)
- Tr[2+2=4] depends on $\{2+2=4\}$ (idem)
- Tr[Tr[2+2=4]] depends on $\{Tr[2+2=4]\}$
- $\lambda = \neg \operatorname{Tr}[\lambda]$ depends on λ (itself!)

ϕ depends on a set of sentences

• ϕ is *sensitive* only to those sentences being true or not.

Leitgeb's definition of groundedness

- T-equivalences are required to hold only for grounded sentences.

 Kripke and Leitgeb: constructions very similar, but not the same set of grounded sentences.

(日)、(型)、(E)、(E)、(E)、(O)()

 Kripke and Leitgeb: constructions very similar, but not the same set of grounded sentences.

Hypothesis

There is one notion of groundedness, but Kripke and Leitgeb's *parameter settings* differ.

Truth and paradoxGroundedness
ooParameters
ooPerspectives
oQuestionsI: Classical or three-valued logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem $\operatorname{Tr}[\lambda] \lor \neg \operatorname{Tr}[\lambda]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **Problem** $\operatorname{Tr}[\lambda] \lor \neg \operatorname{Tr}[\lambda]$
- Solution Cantini's classical reformulation of Kripke

Problem $\operatorname{Tr}[\lambda] \lor \neg \operatorname{Tr}[\lambda]$

Solution Cantini's classical reformulation of Kripke

Truth and paradox 00	Groundedness 00	Parameters	Perspectives O	Questions
II: Conditional	dependence			

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Problem $\operatorname{Tr}[2+2=4] \lor \lambda$

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	○○●○	O	
II: Conditiona	l dependenc	е		

- Problem $\operatorname{Tr}[2+2=4] \lor \lambda$
- **Solution** (Leitgeb) presuppose certain truths.

• Problem $Tr[2+2=4] \lor \lambda$

Solution (Leitgeb) presuppose certain truths.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	○○○●	O	
III: Consistency	/			

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• **Problem** $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	○○○●	O	
III: Consistency	/			

- **Problem** $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$
- **Solution** presuppose consistency of extension of Tr

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	○○○●	O	
III: Consistency	y			

• **Problem** $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

Solution presuppose consistency of extension of Tr

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	○○○●	O	
III: Consistency	/			

Problem $\operatorname{Tr}[\lambda] \wedge \operatorname{Tr}[\neg \lambda]$

Solution presuppose consistency of extension of Tr

 Main result Kripke (+classical) and Leitgeb (+conditional, +consistent) yield same grounded sentences.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	•	
Conclusion				

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	●	
Conclusion				

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の��

Overview

Paradoxes are problematic for the definition of truth

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	•	
Conclusion				

- Paradoxes are problematic for the definition of truth
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences"

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	•	
Conclusion				

- Paradoxes are problematic for the definition of truth
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences"
- "Grounded is one, Cantini and Leitgeb call it different names."

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	•	
Conclusion				

- Paradoxes are problematic for the definition of truth
- Kripke (Cantini) and Leitgeb keep equivalences $Tr[\phi] \leftrightarrow \phi$ for "grounded sentences"
- "Grounded is one, Cantini and Leitgeb call it different names."

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Perspectives

Aboutness to generalise "dependence"

Truth and paradox	Groundedness	Parameters	Perspectives	Questions

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ Q @

Grazie per l'attenzione

- Se non è sul web, non esiste.
- Therefore, you can find the paper online:
 - google "Floris van Vugt", or
 - http://vanvugt.cjb.net/

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	0	
Dependencies				

Simple dependence

 ϕ is sensitive only to the $\Phi{\rm -sentences}$ being true or not

Conditionality

 ϕ is sensitive only to the $\Phi-$ sentences being true or not, but presupposing $\Sigma-$ sentences are all true.

Conditional c-dependence

 ϕ is sensitive only to the $\Phi-{\rm sentences}$ being true or not, presupposing

- Σ–sentences true, and
- that the extension of Tr is consistent.

Given classical \mathcal{L} , $i_{\mathcal{L}}$ interpret \mathcal{L} into a domain D. Suppose $E \subset D$ (codes of) true \mathcal{L}_{Tr} -sentences, and $A \subset D$ false sentences.

$$\mathcal{L}_{\mathcal{L}_{\mathsf{Tr}}(E,A)}(\mathsf{Tr})(d) = \begin{cases} 1 & \text{if } d \in E \\ 0 & \text{if } d \in A \\ \uparrow & \text{otherwise} \end{cases}$$
 (1)

and Kleene's strong three-valued logic. Given $\mathcal{L}_{Tr}(E, A)$ we can find

$$J_{(E,A)} \stackrel{\text{def}}{=} \{ \phi \in \mathcal{L}_{\mathsf{Tr}} | \phi \text{ is true under } i_{\mathcal{L}_{\mathsf{Tr}}(E,A)} \}$$
(2)

$$J^{-}_{(E,A)} \stackrel{\text{\tiny def}}{=} \{ \phi \in \mathcal{L}_{\mathsf{Tr}} | \phi \text{ is false under } i_{\mathcal{L}_{\mathsf{Tr}}(E,A)} \}$$
(3)

Given $E \subset \mathcal{L}_{Tr}$ a "set of negatives" is defined: $\neg E \stackrel{\text{def}}{=} \{\phi | \neg \phi \in E\}$. Since $\mathcal{L}_{Tr}(E, A)$ is a closed language, we find that $J_{(E,A)}^- = \neg J_{(E,A)}$.

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	0	
Kripke formally	/			

If we generalise the above procedure we find a sequence $(E_{\alpha})_{\alpha \in On}$ as follows:

•
$$E_0 = \emptyset$$
,
• $E_{\alpha+1} = J_{(E_{\alpha}, \neg E_{\alpha})}$ and

•
$$E_{\beta} = \bigcup_{\alpha < \beta} E_{\alpha}.$$

Monotonicity \rightarrow fixed point E_{∞} .

A sentence ϕ of \mathcal{L}_{Tr} is defined to be *grounded* if it has a truth value (i.e. true or false) in $\mathcal{L}_{Tr}(E_{\infty}, \neg E_{\infty})$. Hence ϕ is grounded iff $\phi \in E_{\infty} \cup \neg E_{\infty}$.

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	O	
Leitgeb forma	ally			

If $\phi \in \mathcal{L}_{\mathsf{Tr}}$ then $\mathsf{Val}_{\Psi}(\phi)$ denotes the truth value in the standard model of arithmetic enriched with a truth predicate which has extension $\Psi \subset \mathcal{L}_{\mathsf{Tr}}$.

We define that ϕ depends on $\Phi \subset \mathcal{L}_{\mathsf{Tr}}$ iff for all $\Psi_1, \Psi_2 \subset \mathcal{L}_{\mathsf{Tr}}$, we have that if $\mathsf{Val}_{\Psi_1}(\phi) \neq \mathsf{Val}_{\Psi_2}(\phi)$ then $\Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$.

Then Leitgeb shows that $D_{\phi} \stackrel{\text{def}}{=} \{ \Phi \subset \mathcal{L}_{\mathsf{Tr}} | \phi \text{ depends on } \Phi \}$ is a filter.

Similarly $D^{-1}(\Phi) \stackrel{\text{def}}{=} \{ \phi \in \mathcal{L}_{\mathsf{Tr}} | \phi \text{ depends on } \Phi \}$. Leitgeb shows D^{-1} to be monotonic.

We define an ordinal sequence $(\Phi_{\alpha})_{\alpha \in On}$ as follows:

•
$$\Phi_0 = \emptyset$$
,

•
$$\Phi_{lpha+1}=D^{-1}(\Phi_{lpha})$$
 and

•
$$\Phi_{\beta} = \bigcup_{\alpha < \beta} \Phi_{\alpha}.$$

Least fixed point Φ_{If} of grounded sentences.

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	O	
Cantini				

 $Val_{\Psi}(\phi)$ represents the truth value of the formula ϕ given that the Tr-predicate's extension is Ψ .

A set $\Psi \subset \mathcal{L}_{Tr}$ will be considered *consistent* if, whenever $\psi \in \Psi$, then $\neg \psi \notin \Psi$.

An operator is defined as, for all $\Phi \subset \mathcal{L}_{\mathsf{Tr}}$,

 $\mathsf{FV}(\Phi) \stackrel{\text{\tiny def}}{=} \{ \phi \in \mathcal{L}_{\mathsf{Tr}} | \forall \Psi \supset \Phi, \text{ s.t. } \Psi \text{ is consistent, } \mathsf{Val}_{\Psi}(\phi) = 1 \},$ Monotonous and consistency–preserving.

A sequence $(E'_{\alpha})_{\alpha \in On}$ is defined:

$$\bullet E_0' = \emptyset,$$

•
$$E'_{lpha+1} = \mathsf{FV}(E'_{lpha})$$
 and

• $E'_{\beta} = \bigcup_{\alpha < \beta} E'_{\alpha}$. Its least fixed point is called E'_{∞} .

 Truth and paradox
 Groundedness
 Parameters
 Perspectives
 Questions

 Conditional dependence formally (def. in Leitgeb[2005])

Conditional dependence

 $\phi \operatorname{dep}_{\Sigma}(\Phi) \stackrel{\text{def}}{=} \text{for all } \Psi_1, \Psi_2 \subset \mathcal{L}_{\mathsf{Tr}} \text{ s.t. } \Sigma \subset \Psi_1, \Psi_2 \text{ it holds that}$ $\operatorname{Val}_{\Psi_1}(\phi) \neq \operatorname{Val}_{\Psi_2}(\phi) \rightarrow \Psi_1 \cap \Phi \neq \Psi_2 \cap \Phi$

$$\begin{split} & \Phi_0^{\mathsf{AT}} = \emptyset, \\ & \Gamma_0^{\mathsf{AT}} = \emptyset, \\ & \Phi_{\alpha+1}^{\mathsf{AT}} = \mathsf{D}_{\Gamma_{\alpha}^{\mathsf{AT}}}^{-1} (\Phi_{\alpha}^{\mathsf{AT}}), \\ & \Gamma_{\alpha+1}^{\mathsf{AT}} = \{\phi \in \Phi_{\alpha+1}^{\mathsf{AT}} | \mathsf{Val}_{\Gamma_{\alpha}^{\mathsf{AT}}} (\phi) = 1\}, \\ & \Phi_{\beta}^{\mathsf{AT}} = \bigcup_{\alpha < \beta} \Phi_{\alpha}^{\mathsf{AT}}, \\ & \Gamma_{\beta}^{\mathsf{AT}} = \bigcup_{\alpha < \beta} \Gamma_{\alpha}^{\mathsf{AT}}, \end{split}$$

Using that for all $\Phi, \Phi', \Sigma, \Sigma' \subset \mathcal{L}_{\mathsf{Tr}}$, for all $\alpha, \beta \in \mathsf{On}$,

$$\begin{array}{l} \textbf{I} \quad \text{If } \Phi \subset \Phi' \text{ and } \Sigma \subset \Sigma' \text{ then } \mathsf{D}_{\Sigma}^{-1}(\Phi) \subset \mathsf{D}_{\Sigma'}^{-1}(\Phi') \\ \textbf{2} \quad (a) \quad \Phi_{\alpha}^{\mathsf{AT}} \subset \Phi_{\alpha+1}^{\mathsf{AT}} \text{ and } (b) \quad \Gamma_{\alpha}^{\mathsf{AT}} \subset \Gamma_{\alpha+1}^{\mathsf{AT}} \\ \textbf{So a least fixed point, called } \Phi_{\mathsf{lf}}^{\mathsf{AT}}. \end{array}$$

 Truth and paradox
 Groundedness
 Parameters
 Perspectives
 Questions

 Conditional c-dependence formally

(日)、(型)、(E)、(E)、(E)、(O)()

Conditional c-dependence

$$\begin{split} \phi \operatorname{cdep}_{\Sigma}(\Phi) \stackrel{\text{\tiny def}}{=} \text{for all } consistent \\ \Psi_{1}, \Psi_{2} \supset \Sigma : \operatorname{Val}_{\Psi_{1}}(\phi) \neq \operatorname{Val}_{\Psi_{2}}(\phi) \rightarrow \Psi_{1} \cap \Phi \neq \Psi_{2} \cap \Phi. \end{split}$$

$$\begin{aligned} & \Phi_0^{c,AT} = \emptyset, \\ & \Gamma_0^{c,AT} = \emptyset, \end{aligned} \\ & \Phi_{\alpha+1}^{c,AT} = \mathsf{D}_{c,\Gamma_\alpha^{c,AT}}^{-1} (\Phi_\alpha^{c,AT}), \\ & \Gamma_{\alpha+1}^{c,AT} = \{\phi \in \Phi_{\alpha+1}^{c,AT} | \mathsf{Val}_{\Gamma_\alpha^{c,AT}} (\phi) = 1\} \end{aligned} \\ & \Phi_\beta^{c,AT} = \bigcup_{\alpha < \beta} \Phi_\alpha^{c,AT}, \\ & \Gamma_\beta^{c,AT} = \bigcup_{\alpha < \beta} \Gamma_\alpha^{c,AT} \end{aligned}$$

Truth and paradox	Groundedness	Parameters	Perspectives	Questions
00	00	0000	O	
Reconciliation	proof overvi	ew		

• For all
$$\alpha \in \mathsf{On}$$
, $\Phi_{\alpha}^{\mathrm{c,AT}} = \pm \Gamma_{\alpha}^{\mathrm{c,AT}}$

Redefinition

$$\begin{split} & \mathsf{\Gamma}_{0}^{\mathrm{c},\mathrm{AT}} = \emptyset, \\ & \mathsf{\Gamma}_{\alpha+1}^{\mathrm{c},\mathrm{AT}} = \{\phi \in \mathsf{D}_{\mathrm{c},\mathsf{\Gamma}_{\alpha}^{\mathrm{c},\mathrm{AT}}}^{-1}(\pm\mathsf{\Gamma}_{\alpha}^{\mathrm{c},\mathrm{AT}}) | \mathsf{Val}_{\mathsf{\Gamma}_{\alpha}^{\mathrm{c},\mathrm{AT}}}(\phi) = 1\} \stackrel{\text{def}}{=} \\ & \Delta_{\boldsymbol{c}}(\mathsf{\Gamma}_{\alpha}^{\mathrm{c},\mathrm{AT}}), \\ & \mathsf{\Gamma}_{\beta}^{\mathrm{c},\mathrm{AT}} = \bigcup_{\alpha < \beta} \mathsf{\Gamma}_{\alpha}^{\mathrm{c},\mathrm{AT}}. \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の��

•
$$\phi \operatorname{cdep}_{\Phi}(\pm \Phi) \leftrightarrow \phi \in \pm \mathsf{FV}(\Phi)$$

• For any consistent $\Phi \subset \mathcal{L}_{\mathsf{Tr}}$, $\Delta_c(\Phi) = \mathsf{FV}(\Phi)$

• For all
$$\alpha \in On$$
, $\Phi_{\alpha}^{c,AT} = \pm E_{\alpha}'$ and $\Gamma_{\alpha}^{c,AT} = E_{\alpha}'$.