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Abstract

This paper will discuss the problem of the incorporation of par-
ticular affirmative propositions in Leibniz’s system of logical calculus,
which was designed in such a way that all inferences could be arith-
metically tested. First of all, some of the definitions of the concepts
that will have to be used in this discussion will be clarified. Secondly,
Leibniz’s thoughts on formal transcription of logical inferences and
on the basis of his work Elements of a Calculus (1679) the system of
logical calulus that derives from his transcription will be discussed. It
will become clear that in Leibniz’s original formulation the problem
of particular affirmative propositions lies in the case in which not one
of the two terms of a particular affirmative proposition is the genus of
the other, on which assumption the assignment of products of prime
numbers to compound terms relied. This problem directly reflects the
inability of integers to model conceptual complexity and reflects the
disrepancy between the intensional and extensional approaches to the
problem.

1 Introduction

If one is optimistic that there is a unique definitive truth, then perhaps
there is a way in which man can determine the truth of each proposition



beyond doubt. The question would be what criterion would be suited to this
purpose and the clarity, unambiguity and certainty of mathematics renders
it a virtuous example of a system of definitive truth.

These considerations led the philosopher Leibniz to his attempts to firstly
construct a convention in logical symbolic transcription, and then design a
system, fundamentally defined by arithmetic, by which the validity of infer-
ences could be verified through simple calculations.

Leibniz writes [Logical Papers, 18]:

This is our prerogative: that by means of numbers we can judge
immediately whether propositions presented to us are proved, and
that what others could hardly do with the greatest mental labour
and good fortune, we can provide with the guidance of symbols
alone, by a sure and truly analytical method. As a result of this,
we shall be able to show within a century what many thousands
of years would hardly have granted to mortals otherwise.

1.1 Problem

The main question that will be addressed in this paper is:

Main question What is the origin of the problem of particular affirmitives
in Leibniz’s original formulation of the system of logical calculus?

2 Preliminary Analysis

2.1 Terminology

Before embarking on discussing the main question it seems wise to define
some of the concepts that will be used and briefly discuss each of them —
which is what shall be done in this section.

First of all, by “term” will be understood here, a word or a collection
of words that (1) does not exclusively perform a grammatical function, and
(2) can be understood in itself without any reference to other words usually
appearing in context. For instance, it seems reasonable to assume that “or”
is not a term (since it is solely grammatical, and, therefore, cannot be under-
stood in itself, but only in relation with terms in its grammatical vicinity)
but “Socrates” (a name) is.



Terms can appear in several modes, which can, for now, generally be di-
vided into noun, verb and adjective. By means of exclusion of grammatical
words and particles however, these do not distinguish between the appli-
cations of terms, but are rather synonymous. For instance, one can say
“Socrates is a thinker,” or, “Socrates is thinking,” or “Socrates thinks,” us-
ing the nominal, adjectival and verbal forms, respectively, of the concept of
“thinking.” However, the two sentences do not differ in meaning significantly
enough to distinguish them in the logical analysis within the framework of
this paper. This, therefore, is an assumption.

Furthermore, terms can refer to individuals on the one hand, in which case
they will be called singular, or to groups of individuals on the other hand,
grouped by some relevant criterion that is understood to be in the term and
corresponds to a universal notion, in which case they will be called univer-
sal. The precision of this definition will be of importance to the distinction
between intension and extensino.

A proposition consists of terms and grammatical connection words, and
serves to define a certain conceptual relationship between the terms. In the
simple situation that will be found at the starting point for this analysis,
a proposition consists of only two terms: a subject and a predicate. The
predicate is what is said of the subject, that is, what is predicated of the
subject.

Socrates is a thinker.
subject  (grammatical) predicate

2.2 Intension/Extension and Species/Genera

In philosophy of language the concepts intension and extension express a
distinction between ways to consider the meaning of a term. By extension,
or denotation, is understood the collection of individual things to which
the term applies. By intension, or connotation, is understood the set of
qualities that those things that correspond to the term are presumed to have
in common. For instance, the intension of the term “table” is a piece of
furniture, consisting in a plate and, typically, four legs, and the extension
are the so many tables that are found in reality.

The distinction of species and genera here will be that used by Artistotle
and adopted by Leibniz, and is best understood extensionally; both of them
refer to groups of individuals and all the individuals of the species are in-
cluded in the genus, but not vice versa; in addition to the individuals of the



species there are found many other individuals comprehended in the genus.
For instance, “furniture” can be said to be a genus in relation to the species
of “tables.”

In the closing of the preliminary discussion on intension and extension, it
seems noteworthy that there is what will be referred to as the quantitatively
wnverse relationship between the intension and the extension in the sense that
the more is comprehended in the one, the less is comprehended in the other.
For instance, moving attention from “man-made equipment”; via “furniture”
to finally “tables,” is moving from genera to species, and thereby (1) shifting
extensionally from an enormous set of individuals comprehended by “man-
made equipment” to a smaller and smaller included sets, but at the same time
(2) shifting intensionally from a very general concept to concepts including
many different and distinct features. In general, it will be held here that
the more is comprehended intensionally in a term, the less is comprehended
extensionally, and therefore also vice versa.

It is this inverse relationship that causes the fact that, properly speaking,
extensionally the species is in the genus, but intensionally the genus is in the
species (all general that constitute the concept of the genus must be included
in the species, together with additional features that set the members of the
set of the species apart from the other members of the genus).

2.3 Aristotle’s Inference Schemes

Aristotle designed an exact system of inference and distinguished different
propositions, which are illustrated below, together with their current conven-
tional formal notation:

A universal affirmative  All Sis P Va(Sz — Px)
E  universal negative No S'is P Va(Sr — —Px)
[ particular affirmative Some S is P Jz(Sz A Px)

O particular negative Some S is not P Jx(Sx A =Px)

Firstly, it is important to note that there can be identified are mutually
exclusive pairs, such that one of each pair can be formulated in terms of a
negation of the complementary case. For instance, It seems reasonable to
hold as logically equivalent on the one hand that all S are P, and on the
other, that there is no S which is not P. This can be expressed as follows:

A(S,P)=-0(S,P) .,  E(S,P)=-I(S,P) (1)

Secondly, the propositions have been worded in such a way that they can
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be interpreted both intensionally and extensionally; intensionally both are
qualities and extensionally both are sets of individuals and in each case the
relations of complementarity expressed above can be understood.

2.4 Truth

When assigning symbols to propositions, terms, or relations between them,
it becomes necessary to consider the nature of these symbols and the notion
of truth that they rely on or judge upon.

As to the definition of truth, Leibniz prefers to consider truth as, gen-
erally, that case in which the concept of the predicate lies in that of the
subject. This is also known as praedicatum inest subjecto. The intensional
nature of this definition is apparent in the following quote. Leibniz, referring
to a similar conception of truth found in Aristotle, writes [New FEssays on
Human Understanding, 486 (Bassler 118)]:

This manner of statement deserves respect; for indeed the pred-
icate is in the subject, or rather the idea of the predicate is in-
cluded in the idea of the subject.

From this assumption, Leibniz built his system of logical calculus. As to
the nature of symbols, Leibniz wrote [1677 Dialogue (Bassler 118)]:

There is some relation or order in the characters which is also
in the things, especially if the characters are well invented. |...]
[T]heir use and connection have something which is not arbitrary,
namely a definite analogy between characters and things, and
the relations which different characters expressing the same thing
have to each other. This analogy or relation is the basis of truth.

It then is evident that Leibniz considers correspondence between the re-
lations between the terms on the one hand, and the relations between the
“things” they refer to as the basis for truth in the relations.

2.5 Prime Numbers

Since Leibniz included the notions of prime and relative prime numbers in
his logical calculus, a small exploration of this subject will increase under-
standing of the way Leibniz attemped to model conceptual relations.



A factor is a number and any number is said to have a particular factor
if it can be divided by it, yielding an integer number. Since we can write 6
as 6 = 2 x 3, we can say that 2 and 3 are factors of 6, and 2 is not a factor
of 5, since g is not an integer number.

A number is said to be an (absolute) prime number when its only factors
are the number itself and 1. For instance, 2 and 5 are a prime numbers, but
6, as we saw above has 2 and 3 as factors, and thus has other factors than
itself and 1 and therefore is not a prime number.

A common factor of two numbers a and b is a number that is a factor for
both @ and . Two numbers are said to be relative prime numbers if they
only have 1 as a common factor. For instance, 3 and 4 are relative prime
numbers, but 4 and 6 are not, since they have the common factor 2.

It is not difficult to see that any two different absolute prime numbers
are also relative prime numbers, since prime numbers have only themselves
and 1 as divisors, and therefore two unequal prime numbers have no common
factors but 1.

3 Historical Development of Leibniz’ Logical
System

Leibniz developed his attempt to generate a convention in logical symbolic
transcription over the years, and this resulted in the three versions of it which
are currently generally distinguished. In this section, only the first will be
discussed, and the different interpretations that Leibniz gave for it will be
addressed.

In his article “Leibniz’s Interpretation of His Logical Calculi”, Nicolas
Rescher establishes the five building blocks of the logical theory:

1. Variables for terms

2. Singular and binary operators
3. Relations between terms

4. Rules of Inference

5. A group of axiomatic statements



3.1 First Formulation

The first formulation was designed by Leibniz around 1679 [Rescher, 3]. Vari-
ables for terms are simply the lower-case letters a, b, etc. The singular oper-
ator is the negation (—) and the binary operator is juxtaposition (denoted by
simply writing the two terms one after another). Relations between terms
are “est” (C), equality (=), and inequality (#). Leibniz then defined the
group of axiomatic statements by means of these words and they are the
following [Rescher, 3]:

1 aCa

2 a = —"a

3 aCb < —-bC —a

4 (acb)AN(bCec)=aCc

5 (aCb)N(bCa) < a=1D
6 a#b < —(a=0)

7 (a=0b)= (b=a)

8 (a=bANb=c)=(a=rc)
9 a=aa

10 ab=ba

11 aCbe < (aCb A(aCc)

12 (aCb)= (ca Ccb)

13 (bCa)A(cCa)= (bcCa)

14  (aCb)A(cCd)= (ac C bd)

15 abCa

16  abCb

17 proper(a) = —(a C —a)

18  proper(a) = ((a C =b) = —(a C b))

Before continuing, it is fruitful to note that the expressions 5 and 6 define
the binary operators =, #. To come to an understanding of this logical system
it therefore would suffice to, as Rescher notes [5]:

specify (1) the set of “terms,” (2) the effects of the non operator,
and of the operation of juxtaposition, (3) the meaning of the
relation “est”, and (4) the meaning of propriety; provided that
this is done so as to satisfy the assertions.

Leibniz himself gave two alternative interpretations for this first system.



3.2 Intensional Interpretation

Terms are the intensions of predicates, in other words, collections of proper-
ties. Non-x refers to not having the property z. Juxtaposition refers to hav-
ing both properties (ab means having both a and b). Furthermore, Rescher
notes that [6] “[a] term is proper if it is not of universal extension (i.e., null
extension).” Also, a C b is to say that a contains in its understanding b.

3.3 Extensional Interpretation

Terms are considered sets of objects. Non-z refers to all objects not belonging
to set x. Juxtaposition refers to the set of objects that are in both sets
juxtaposed. Any set that is not empty is proper. a C b in this interpretation
means that a is fully contained in the b.

3.4 Comparison

First of all, all expressions mentioned as axioms can be understood as mean-
ingful in both interpretations. However, the fact that one and the same for-
mally defined system can be understood in both ways seems quite plausible
and satisfying, but the inverse relationship between intension and extension
pointed out in section 2.2 demands caution. Indeed, when a C b would by
the intensional interpretation mean that “a includes b” in its understanding,
therefore b is a genus relative to the species a, and therefore extensionally
one should say “a is included in b.” This discrepancy of terms causes much
confusion and obstructs interpretation of Leibniz’s logical calculus.

Indeed, when discussing species and genera, Leibniz uses his intensional
interpretation and foresees the existence of problems [Bassler, 121]:

I consider the genus as a part of the species, since the concept of
the species is produced from the concept of the genus and of the
differentia. On this principle I constructed this method of cal-
culation, since I considered ideas and not individuals. However,
proceeding in this way it was very difficult to descend from the
genus to the species, since it is a progress from the part to the
whole.



4 Leibniz’s Logical Calculus

4.1 Number assignment to concepts

In his essay “Elements of a Calculus” (1679), Leibniz elaborates how calculus
could be performed on logical inferences.

Leibniz starts out by asserting that to any term a number can be assigned,
and that that will be enough to capture that part of its meaning that is
relevant to the analysis by logical calculus. Leibniz holds that this fact
reflects a sort of mathematical certainty in our concepts [17]:

For the moment, however, numbers are of the greatest use, be-
cause of their certainty and of the ease with which they can be
handled, and because in this way it is evident to the eye that
everything is certain and determinate in the case of concepts, as
it is in the case of numbers.

Prime numbers will be used in this assignment.

Furthermore, in the simple case where two concepts a and b are combined
in another concept, the number assigned to this concept is the (arithmetic)
product ab, analogous to the logical system introduced in subsection 3.1 [18]:

when the concept of a given term is composed directly of the
concepts of two or more other terms, then the symbolic number
of the given term should be produced by multiplying together the
symbolic numbers of the terms which compose the concept of the
given term. For example, since man is a rational animal, if the
number of animal a, is 2, and of rational r, is 3, then the number
of man, h will be the same as ar: in this example, 2 x 3, or 6.

It is important to note at this point that Leibniz proceeds from the in-
tension of the concepts.

4.2 Analysis of fundamentals

First of it can be noted here that Leibniz hoped to build all concepts present
to the human mind from a finite number of simple and indivisible ones;
these being assigned prime numbers to represent their conceptual indivisi-
bility. Secondly, Leibniz is optimistic that this will enable us to cover all
concepts in the world. Even though perhaps his intuition was correct, it is
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not immediately evident that all concepts of the world can be placed in a
arithmetically specified hierarchical order. It is not the problem of regressus
ad infinitum which seems most pressing here — since any concept could be
taken as a starting point and consequently others could be derived from it
— but rather circularity in definitions might prevent a complete arithmetical
rendering the conceptual complexity that is present to the human intellect.
However, since this is not the main topic of this paper, a further discussion
of will be omitted. Leibniz writes [18]:

The rule given in article 4 is sufficient for our calculus to cover
all things in the whole world, as far as we have distinct concepts
of them, i.e. as far as we know some of their requisites by which,
after we have examined them bit by bit, we can distinguish them
from all others.

Particularly illuminating is the comment of O. Bradley Bassler in his
article Leibniz on intension, extension and syllogistic inference, stating that
a project of this sort can be thought of in the weak and the strong sense. In
the weak sense, it would be a project of finding ways to evaluate inferences
in logic, to which end arbitrary characteristic numbers would be assigned
to concepts. In the strong sense, it would be finding a unique numerical
characterisation for concepts, that would not only be used in any particular
application, but could be applied in any situation. Bassler suggests that
Leibniz did succeed considerably in the weak sense, but did not get very far
in the strong sense.

4.3 Relations of terms

Leibniz then distinguishes several ways in which two terms can relate to each
other:

e Contained — One is contained in the other.

— Coincident — They are equivalent.

— Genus and Species — One contains the other but they do not
coincide.

e Disparate — Neither contains the other.

— Conspecies They have something in common.
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— Heterogeneous What they have in common is very remote.

Leibniz continues the elaboration of his system for logical calculus by
asserting that any universal affirmative statement can be tested if the char-
acteristic numbers assigned to each of the concepts are known, by simply
verifying that the arithmetic corresponds. For instance, if “man is a rational
animal” is characterised by 6 = 2 x 3 then it can be verified whether “all men
are rational” is true, by checking whether being rational is included in the
concept of men: dividing 6 by 2, g = 3 results an integer number, therefore
the proposition is true [22]:

From this, therefore, we can know whether some universal affir-
mative proposition is true. For in this proposition the concept
of the subject, taken absolutely and indefinitely, and in general
regarded in itself, always contains the concept of the predicate.

4.4 Problem of particular affirmatives

In particular affirmative propositions, this strategy cannot be applied, since
particular affirmative propositions can be true without their universal affir-
mative counterparts to be true, therefore there is a need for a criterion that
leaves open the possibility of the predicate not applying to all the instances
of that which the subject refers to, but only some particular ones. Leibniz
notes that [23]:

it is not necessary that the predicate should be in the subject
regarded in itself and absolutely; i.e. that the concept of the
subject should in itself contain the concept of the predicate; it
is enough that the predicate should be contained in some species
of the subject, i.e. that “the concept of some instance or species

of the subject should contain the concept of the predicate,” even
though it is not stated expressly what the species is.

This problem can be illuminated by considering the situation extension-
ally. Assuming one set of individuals x and another set of individuals y, such
that, in the formal transcription we have used so far x C y. Now if  # y and
x # () the universal affirmative claiming that y C x (“All y have property
A”) is false, but the particular affirmative claiming that “Some y are A” is
true (and those y must be x). As we have considered z as a subset of y, z can
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be considered a species and y the genus to which it belongs. Furthermore,
Leibniz notes that, in the symbols introduced here, if x = y instead of x C y
it could have been claimed universally (y = x), which follows immediately
from axiom 7 [20].

Before going on with a discussion of the problem that follows, it should
be clear that once this problem is resolved, the system of logical calculus
can be freely applied to all of the four general propositions introduced in
section 2.3, since, as has been shown, the particular negative statements can
be understood in terms of their universal affirmative counterparts, and vice
versa.

4.5 Analysis

Generally, there can be identified a number of sufficient (but not necessary)
conditions for a particular affirmitive proposition (“Some S are P”) to hold
— for the subject S and the predicate P such that S A P # (), most easily
interpreted as properties —:

e PCS S#P

e S=P

e SCP,S#P

Leibniz writes this intensionally [23]:

[The concept of subject] will be related [to that of the predicate]
as whole to part when the concept of the predicate, as genus, is
in the concept of the subject, as species: e.g. if “bernicle” is the
subject and “bird” the predicate. It will be related as whole to
coincident whole when two equivalents are stated of each other
reciprocally, as when “triangle” is the subject and “trilateral” the
predicate. Finally, it will be related as part to whole, as when
“metal” is the subject and “gold” the predicate.

It is apparent that in each of these cases, the particular affirmative propo-
sition can be shown correct by arithmetic — that is, writing out the prime
factors of the numbers assigned to concept of the predicate and the subject,
and thereby verifying that they are not relative primes, will be sufficient to
show that the particular affirmative proposition holds.
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The problem of particular affirmative lies in the cases that fall under nei-
ther of the categories above, but still are sufficient for a particular affirmative
proposition to hold. Leibniz distinguishes the following cases:

e A species of the subject contains the predicate

— Coincident = The predicate is a species of subject

— Genus and Species = The predicate is a genus of a species of the
subject

Leibniz writes [24]:

Now, two genera of the same species either coincide or, if they
do not, they are necessarily related as genus and species. This
is easily shown, since the concept of the genus if formed simply
by casting-off [abjectio] from that of the species; since, therefore,
from a common species of two genera, genera will appear on both
sides by continued casting-off (that is, they will be left behind
as superfluous concepts are cast off), one will appear before the
other, and so one will seem to be a whole and the other a part.

Here it becomes evident how fundamental the problem of species/genera
and intension/extension is. Leibniz proceeds by conceptually eliminating
specific features of a species and thereby arriving at the concept of a genus.
However, Leibniz assumes here that there is a unique order in which this
elimination of concepts should proceed. For instance, if from the concept
of an antique table, the features that correspond to its being a table would
be cast off, the concept of antique object would remain. If, however, the
features that correspond to its being an antique object would be cast off, the
concept of a table would remain. From this example, it seems evident that
two genera of the same species do not have to either coincide or be related
as genus and species.

Leibniz recognises this and writes [24]:

So we have a paralogism, and with it there falls much that we have
said hitherto; for I see that a particular affirmative proposition
holds even when neither term is a genus or species, such as “Some
animal is rational.”
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We also see the intensional approach of Leibniz in this extract. Formu-
lated extensionally, the problem ultimately is that the two sets S and P can
have common elements S A P without S C P or P C S. Therefore, it is not
necessary that the concept of the subject includes the predicate (as is the
case with universal affirmatives). But then the way of logical calculus, as it
has proceeded up to this point, cannot be properly applied, since neither of
the two terms need to have a common factor, i.e. they can be relative primes
and the particular affirmative proposition can still hold.

5 Conclusion

The main question is thus answered; the problem of species and genera is
the problem of particular propositions. In Leibniz’s original formulation the
problem of particular affirmative propositions lies in the case in which not
one of the two terms of a particular affirmative proposition is the genus of
the other, as a species. That, however, was the condition by which logical
calculus could work by the assignment of prime numbers by products to
compound terms. This problem directly reflects the inability of integers
to model conceptual complexity and the discrepancy between intension and
extension.
Leibniz closes his Elements of a Calculus with the words:

Hence it is also evident that it is not necessary that the subject
can be divided by the predicate or the predicate by the subject,
on which we have so far built a great deal. What we have said,
therefore, is more restricted than it should be; so we shall begin
again.
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