
Learning Anttila Grammars

Floris van Vugt
florisvanvugt@ucla.edu

March 14, 2010

1 Introduction

In optimality theory, the underlying form is taken as input and turned into an
infinite variety of possible output forms by a function generally called Gen.
To decide which of these candidates is actually uttered, we compare how well
the candidates satisfy a number of constraints. The constraints are ordered
and given two candidates, one is more harmonic than the other if it has
fewer violations on some constraint than the other, and equal violations on
all higher ranked constraints. Finally, given a particular input, the winning
candidate is the one that is more harmonic than all the others.

If we now assume that no two candidates have equal violations on all
constraints (i.e. for any two candidates there will be a constraint that dis-
tinguishes them by assigning a different number of violations) then it follows
that there will be one and only one such winner.

But this does not always reflect phonological reality. Some words can be
pronounced in different ways without there being any factors in the context
predicting which. In such a case, we say that these multiple outputs occur
in free variation.

Several proposals have been made as to how optimality theory (OT) could
account for free variation without assuming that two candidates have exactly
the same violations on all constraints. The proposal that will be discussed
in this paper is due to Arto Anttila and henceforth called Anttila gram-
marsAnttila (1997).

The idea is as follows. Constraints are not totally ordered, but they come
in groups called strata, which are totally ordered with respect to each other.

1



The constraints within each stratum, however, do not have any ordering at
all. The central hypothesis is then that each of the possible rankings of the
constraints in a stratum are equiprobable.

The combination of all orderings of constraints within each stratum of the
grammar yields a list of possible total orderings of the all constraints. By
hypothesis these are equiprobable and therefore we predict that the frequency
of occurrence of an output form is the fraction of these orderings under which
it wins.

1.1 An example Anttila grammar

It may be helpful to investigate a representative example of an Anttila gram-
mar. Table 1 shows such an example with seven constraints that come in five
strata. The first stratum contains only constraint A, the second contains B
and C, the third only D, the fourth E and F and the last contains only G.

Hence, there are two possible rankings in the second stratum: BC and
CB. Similarly there are two possible rankings in the fourth stratum: EF
and FE. Since all other strata contain only one member, there is only one
ordering in them. Combining the orderings of the strata this yields a total
of 1× 2× 1× 2× 1 = 4 possible orderings.

These orderings are listed in table 2. We find that for input 1 and 2 the
candidates a and b each win in half of the orderings.

1.2 Learnability

The obvious appeal of Anttila grammars is that they provide an account of
free variation without introducing any further conceptual apparatus: the as-
sumption is that the inside of a stratum is simply underspecified and hence
the speaker randomly puts the constraints into an order and utters the win-
ning candidate.

But one wonders whether these grammars are learnable. Part of the
appeal of optimality theory in its original formulation is that if the constraints
and underlying forms are known, the grammar is learnable by a straight–
forward algorithm called Constraint DemotionTesar & Smolensky (2000). In
other words, given n constraints, the learner does not have to try out all
of the astronomically many n! rankings of constraints in order to learn the
grammar.

2



Table 1: The test grammar we submit to our algorithm. The dashed lines
separate constraints that are in the same stratum; the solid lines separate the
strata. On the basis of the constraint violations we calculated the frequencies
for each of the candidates.

input cand. freq. A B C D E F G

1 a .5 ∗
b .5 ∗
c 0 ∗

2 a 1 ∗
b 0 ∗

3 a 1 ∗
b 0 ∗

4 a .5 ∗
b .5 ∗
c 0 ∗

5 a 1 ∗
b 0 ∗

6 a 1 ∗
b 0 ∗

Table 2: Possible orderings of the constraints in table 1 and the winners for
each input candidate.

Winners
Ordering 1 2 3 4 5 6

A.BC.D.EF.G a a a a a a
A.CB.D.EF.G b a a a a a
A.BC.D.FE.G a a a b a a
A.CB.D.EF.G b a a b a a

3



Table 3: A comparison of the number of classical OT grammars and Anttila
grammars given n constraints

n 1 2 5 10 13
Classical OT grammars 1 2 120 3628800 6227020800
Anttila grammars 1 3 541 102247563 526858348381

How is the case of learning an Anttila grammar? Clearly introducing
strata we have dramatically increased the number of possible grammars.
Given n constraints, there are

∑
1≤i≤n S(i, n) · i! where S is the second order

Stirling number. Table 3 lists some concrete numbers for comparison.
This means that it is even more unrealistic for the learner to generate

all such divisions into strata and check whether they generate the correct
frequencies, than it would be to calculate all classical OT rankings. There is,
however, no obvious more efficient algorithm for learning the Anttila gram-
mars.

In this paper, I will investigate a candidate algorithm for learning Anttila
grammars that is based on the Constraint Demotion procedure and assess
its effectiveness.

2 Parallel Constraint Demotion

The algorithm takes as input a number of input forms and their associated
candidates, as well as a number of constraints. Each of the candidates is
associated with an observed frequency of occurrence. This frequency of oc-
currence is assumed to have been detected by the learner. We further assume
to know the violations of all candidates on each of the constraints. The algo-
rithm will output a division into strata, in other words an Anttila grammar.
This grammar will be built gradually and referred to as target grammar.

1. The target grammar is initially empty: it has no constraints and no
strata.

2. We initialise our focus stratum to the set of all constraints. Their or-
dering in this stratum is irrelevant. This focus stratum is our working
space and we will be moving constraints from it into our target gram-
mar.

4



3. We initially mark all candidates as unaccounted for. The purpose of
this will become clear in what follows.

4. We single out, for each input, the pairs of its candidates (w, l) such that
w has a nonzero frequency of occurrence and l has a zero frequency of
occurrence. Of these, we select only those pairs where both elements
are unaccounted for and remove the others from further analysis.

5. For each constraint in the focus stratum we determine whether that
constraint prefers the occurring (w) or non–occurring (l) candidate of
each pair. In the former case, i.e. when the constraint assigns strictly
less violations to the occurring candidate, we mark the constraint as a
winner–preferer (relative to that pair of candidates). If the constraint
assigns strictly more violations to the occuring candidate, we mark it
as a loser–preferer (again, relative to the pair of candidates). If neither
is the case, it is a neutral constraint.

6. We select the constraints that are not loser–preferer for any of the pairs,
i.e. they must always be neutral or winner–prefer. This set will form a
stratum that we add to our target grammar below all strata that are
already in there (if any).

7. The remaining constraints (i.e. those that for at least one pair prefer
the loser) form the focus stratum for the next cycle.

8. We mark as accounted for those candidates l that have zero frequency
and for which there is an occurring candidate w such that one of the
constraints in our focus set prefers w. The reason we can mark this
candidate as accounted for is that it will not be able to win due to the
occurrence of that constraint in that place in the grammar. This is the
counterpart of “culling” in regular Constraint Demotion.

9. We repeat the steps 4 to 8 until one of the following obtains:

• All of the constraints in the focus set are demoted. That is, we are
entering a loop in which nothing further will happen. We finish
our algorithm by placing the current focus set as a whole as the
lowest stratum in our grammar.

• The focus set is empty. In this case we have placed all constraints
in a stratum of the grammar, hence we are done.

5



Table 4: Cycle 1 (left) and 2 (right) of the Parallel Constraint Demotion
algorithm.

Constraints
pair A B C D E F G
(1a, 1c) w - l - - - -
(1b, 1c) w l - - - - -
(2a, 2b) - w - l - - -
(3a, 3b) - - w l - - -
(4a, 4c) - - - w - l -
(4b, 4c) - - - w l - -
(5a, 5b) - - - - w - l
(6a, 6b) - - - - - w l

Constraints
pair A B C D E F G
(2a, 2b) - w - l - - -
(3a, 3b) - - w l - - -
(4a, 4c) - - - w - l -
(4b, 4c) - - - w l - -
(5a, 5b) - - - - w - l
(6a, 6b) - - - - - w l

2.1 An example

We can now investigate how this procedure works for the grammar given in
table 1. We mark the frequencies for each candidate and remove the division
into strata. In the ideal case our algorithm will find back the division into
strata.

• initialisation. Our focus set is {A,B,C,D,E,F,G}. All candidates are
unaccounted for.

• cycle 1. We identify the occurring/non–occurring pairs and decide
which of the two each constraint prefers, which is illustrated in table
4. We see that only constraints A never prefers a loser and hence we
demote all other constraints. This means our target grammar at the
end of the first cycle has one stratum which contains only A. Since
A prefers the winner in the pairs (1a,1c) and (1b,1c) we mark 1c as
accounted for.

• cycle 2. Our focus set is {B,C,D,E,F,G} (the demoted constraints
from the previous step). Since we have marked (1c) as accounted for,
constraints B and C now never prefer a loser. Hence we add a stratum
with B and C to our grammar. Futher, candidates 2b and 3b are
marked as accounted for.

• cycle 3. Our focus set is {D,E,F,G}. Since we eliminated the two
candidates that D wrongly preferred, it now prefers only winners. All

6



other candidates still prefer at least one loser and thus are demoted. We
add a stratum with only D to our grammar. We mark 4c as accounted
for.

• cycle 4. From {E,F,G} both E and F now only prefer winners (the
only pairs that remain unaccounted for are (5a,5b) and (6a,6b)). We
add a stratum with E and F to the bottom of the grammar.

• cycle 5. The only remaining constraint is G. All candidates are ac-
counted for, so G never prefers a loser, hence we demote it. That is,
we have demoted all constraints in our focus set, hence we terminate
the algorithm and put G in the last stratum of the target grammar.

It has become clear our algorithm has correctly found back the division
into strata that we started out with, that is, it has succesfully learned this
grammar.

2.2 How real are zero frequencies of occurrence?

This algorithm has the curious property of calling on stage the candidates
with zero frequency of occurrence as the counterparts to the “losers” in reg-
ular Constraint Demotion. In our context, these are the candidates that
lose under any of the possible rankings. But can we assume that a language
learner can identify which are these forms that never occur?

Firstly of course there is the general inductive problem that there is no
series of observations that will establish that a form does not occur. Never
having seen an atom being split in my entire life, I nevertheless do not infer
that it is impossible. This problem is also faced by the Constraint Demotion
algorithm for original OT. Under the assumption that there is no free varia-
tion, however, the occurrence of a particular candidate will allow the learner
to infer that all the other candidates are less harmonic and proceed from this
assumption with the sorting of the constraints.

But when forms do occur in free variation, how can the learner decide
between forms that occur at very low frequencies and forms that do not
occur at all? There seems to be no straightforward answer to this objection.
This might be taken to reflect a shortcoming of the Anttila grammars that
predict a sharp, binary distinction between forms that occur and forms that
do not. This is different in, e.g. maxent grammars, where all candidates
are assigned nonzero (but possible very close to zero) frequencies.

7



Table 5: A set of candidates and frequencies that cannot obtain in an Antilla
grammar with the given constraints.

input cand. freq. A B

1 a .4 ∗
b .6 ∗

In practice, a learner that uses the algorithm proposed here might simply
use a variable frequency threshold beneath which forms are treated as non–
occurring.1

2.3 Assessing effectiveness of the algorithm

One can now ask how one should assess the effectiveness of the algorithm.
One criterion could be to assess whether the algorithm, given any set of con-
straints and candidates with their associated frequencies, can learn a division
into strata that yields precisely these frequencies. However, this criterion is
too strict, since one can well imagine cases in which there is simply no di-
vision into strata which will yield the observed frequencies. An example is
given in table 5. The reason is that if one of the constraints is in a sepa-
rate stratum, it will cause the candidate the violates it to occur with zero
frequency. Furthermore, if all constraints are in the same stratum, the fre-
quencies should be equal. So our algorithm cannot be blamed for not find
a division into strata that yields the correct frequencies, for there simply is
none.

Since the interest of this paper is to assess pure learnability of Anttila
grammars and not their descriptive accuracy, we will discard this criticism as
a criticism of Anttila grammars as a whole and not of our learning algorithm.
The question of effectiveness of the algorithm will thus be: which languages
that can be modelled by Anttila grammars can be learned by the algorithm?

1That is, he or she might start out considering all forms that are heard in less than
1% of the cases as non–occuring. If this fails to yield a correct grammar, he or she could
adapt the threshold to become more or less strict.

8



Table 6: An example that shows that the proposed algorithm is not able
to implement fine–tuned strata divisions necessary to obtain the correct fre-
quencies (though an Anttila grammar can capture the frequencies with the
indicated division into strata)

input cand. freq. A B C D

1 a 1/3 ∗ ∗
b 2/3 ∗ ∗

2.4 The exact value of nonzero frequencies is ignored

We can further observe that our algorithm has treated all nonzero frequencies
as being equal. In other words, all that our procedure takes as input is
whether a frequency is zero or nonzero (i.e. whether it will be classified as
w or l), but the exact value of the frequency is not used in the computation.
So, for better or worse, a candidate with .6 frequency of occurrence is treated
the same as a candidate with .05 frequency.

This has one immediate consequence: the algorithm will not be able to
make divisions into strata when these are not motivated by the need to rule
out a particular candidate that we know always loses, but rather by the desire
to fine–tune the relative frequencies of candidates that sometimes win.

The following example will illustrate this point. In table 6 there are no
constraints that prefer a loser (for the simple reason that there is no candi-
date with zero frequency of occurrence). Therefore our algorithm will return
all the constraints in one stratum. But taking all possible permutations of
constraints in that stratum, candidates 1a and 1b win equally often. In
other words, the frequencies calculated according to the output grammar of
our algorithm do not match those that we started out to model. There is,
however, an alternative division into strata which yields the correct output.
The grammar which puts A,B and C in the topmost stratum and D in a
stratum below that will generate precisely the observed frequencies.

In sum, there is an example of a language that can be captured by an
Antilla grammar, but which is not learnable by our algorithm. Perhaps this
is not as serious an objection as it seems. Our algorithm returns in this caes
a division into strata that is too “coarse” in the sense that it fails to make a
subdivision into strata based on the frequencies of the occurring candidates.

9



So one could imagine that after the application of this algorithm an auxiliary
algorithm would be executed to determine if any subdivisions of the strata of
the resulting grammar are necessary to fine–tune the predicted frequencies.

Therefore our question of the effectiveness of the algorithm will be further
narrowed: we are now curious if our algorithm might return a division into
strata that is not just too coarse, but plainly wrong, making divisions where
there should be none. Such cases would be worse, since a hypothetical fine–
tuning mechanism could not repair them without redoing the entire problem.

2.5 A quantitative approach to assess effectiveness

2.5.1 Explanation of the simulation

Now that our question is made precise we turn to a quantitative method to
assess the effectiveness of the learning algorithm.

Using a Java program, random Anttila grammars were generated in the
following fashion (henceforth these are called the original grammars). It
generated 2 to 4 strata containing 1 to 4 constraints each. Next, between
1 and 5 input forms were created with each 2 to 5 associated candidates.
Finally, each candidate was assigned between 0 and 2 violations on each con-
straint. Since these fully specify an Anttila grammar, one can then calculate
the predicted frequencies of occurrence for each candidate by investigating
all possible permutations of the constraints in the strata.

These frequencies, the candidates and constraints (but crucially of course
not the division into strata) was then fed into the algorithm which proceeded
to output a division into strata. We refer to this output as the derived gram-
mar. We then generate all possible orderings for these strata and calculate the
corresponding winners, thus counting the predicted frequencies for each can-
didate. A grammar is then considered to be succesfully learnt if the predicted
frequencies of the derived grammar equal those of the original grammar.

Notice that this does not mean that the division into strata is the same.
For example, in the grammar in table 6 we could replace A with D and
obtain exactly the same frequencies. So what matters is not whether the
algorithm outputs the same strata but whether these strata result in the
same frequencies as the original grammar.

10



Table 7: An example that shows that the proposed algorithm fails to generate
the correct frequencies, and even a further subdivision of the strata will not
remedy this (left). For each occurring/non–occurring pair the candidate
which the constraint prefers (right). The output of the algorithm (bottom),
yielding incorrect predicted frequencies.

input cand. freq. A B C

1 a .5 ∗∗
b .5 ∗
c 0 ∗ ∗

Constraints
pair A B C
(1a, 1c) l w w
(1b, 1c) - - w

input cand. freq. B C A

1 a 1 ∗∗
b 0 ∗
c 0 ∗ ∗

2.5.2 Classification results of the simulation

The algorithm was tested on 100, 000 such randomly generated grammars.
It correctly learned 57, 495 of these (57.5%). In the grammars that were not
correctly learned, a further 8035 (8.0%) simply yielded too coarse a division
into strata (cf. discussion in section 2.4) which means they might be solvable
by an extension of the algorithm. This implies that the remaining 34.5% are
the more serious failures that will be investigated in what follows.

2.5.3 Investigation of incorrectly learned grammars

What grammars are not correctly learned by this algorithm and what is it
about them that causes the procedure to make the wrong stratal divisions?

The grammar in table 7 is one of the simplest and most intriguing ex-
amples of grammars that were incorrectly learned and whose output strata
are not just too coarse. The algorithm detects that constraint A is the only
that ever prefers a non–occurring candidate and thus demotes it to a lower
stratum, and then the procedure ends. The output grammar is shown in
the table and predicts that candidate 1a is the only winner. In other words,
the algorithm has reduced the free variation grammar to a deterministic one
with one winner.

11



Table 8: Overview of the action of each stratum in the original grammar of
table 7.

Winners after each stratum
ordering Stratum (A,B) Stratum (C)

AB.C {b,c} {b}
BA.C {a} {a}

At this point it is unclear how the algorithm could be amended to elim-
inate this incorrect classification. The procedure, it seems, fails to see that
though constraint A by itself prefers a loser when comparing candidate 1a
to 1c, it nevertheless is necessary to pair with constraint B in a stratum to
allow both 1a and 1b to win. Then constraint C can instead be called in
afterwards to eliminate the illegal 1c (or it can even occur before constraints
A and B, as long as it is in a stratum of its own).

This seems to then point at an interesting layer of complexity that Anttila
grammars have added to regular Optimality Theory.

Table 8 shows that in one of the possible orderings of the original gram-
mar, the first stratum (containing only A and B) lets through 1b and 1c, that
is, too many candidates. The second stratum remedies this by selecting only
1b. This is to say, the fact that constraint A prefers a candidate, 1c, which
always loses is not problematic since constraint C in a separate stratum is
sufficient to rule it out.

3 Conclusion

We have investigated a possible learning algorithm for Anttila grammars
which is a generalisation of the Constraint Demotion procedure in regular
optimality theory. The learning algorithm proceeds by demoting constraints
that prefer candidates that never win.

The algorithm, though surprisingly effective in our quantitative simula-
tion, proves to miss the essential interactions that Anttila grammars allow
between the constraints. As such, it is a good heuristic a language learner
might use but by no means an effective procedure that is guaranteed to find
the suitable Anttila grammar for a set of observed data.

12



References

Anttila, Arto. 1997. Variation in finnish phonology and morphology. Ph.D.
thesis, Stanford University.

Tesar, Bruce, & Smolensky, Paul. 2000. Learnability in optimality theory.
Cambridge, Massachusetts: The MIT Press.

13


